$\psi = A\cos\theta$ 物質に衝突したり 室温 20° 換算質量は $\mu = \sqrt{2}m_{\rm n}$ $\hbar\omega = m_{\rm n}v'^2/2 - m_{\rm n}v^2/2 \cong$	$\psi = A\sin(\theta - \pi/2)$ 物質中の原子核に衝突したり 室温 20° C
室温 20° 換算質量は $\mu=\sqrt{2}m_{\mathrm{n}}$	室温 20°C
換算質量は $\mu = \sqrt{2}m_{\mathrm{n}}$	
	I to the PER III
$\hbar\omega = m_{\rm n}v'^2/2 - m_{\rm n}v^2/2 \cong$	換算質量は $\mu=m_{ m n}/2$
	$\hbar\omega = m_{\rm n}v^2/2 - m_{\rm n}v'^2/2 \cong$
$m_{ m n}v(v'-v)$	$m_{ m n}v(v-v')$
3.2 は	図 3.2 は
3.5, 3.12, 3.17, 3.18, 3.19	図 3.5、図 3.12、図 3.17、図 3.18、
	図 3.19
f(Q)	$f\mathbf{Q}$
$\int_{V_{\mathbf{P}}} \beta(\mathbf{r}') e^{-i\mathbf{Q}\cdot\mathbf{r}} \mathrm{d}^{3}\mathbf{r}$	$\int_{V_{\mathbf{P}}} \beta(\mathbf{r}') e^{-i\mathbf{Q}\cdot\mathbf{r}'} \mathrm{d}^{3}\mathbf{r}'$
$f^*(Q)f(Q) = f(Q) ^2$	$f^*(\mathbf{Q})f(\mathbf{Q}) = f(\mathbf{Q}) ^2$
99.8% オルト水素に遷移する。	99.8% パラ水素に遷移する。
ρ	Q
以下に、	表 3.5 に、
原子	原子核
微分散乱散乱断面積	微分散乱断面積
0.5; 茶	0.5; 青
$\beta_2=0$; 青	$\beta_2 = 0; \stackrel{\star}{X}$
系内の粒子体積分率 ϕ を大きくな	系内の粒子体積分率 ϕ が大きくな
る、	ると、
$\xi^2 q^2$	$\xi^2 Q^2$
Ξ^2q^2	$\Xi^2 Q^2$
$\log I(Q \to \infty)$	$I(Q \to \infty)$
$I(Q) \sim \frac{R^{D_{\rm s}}}{q^{2d-D_{\rm s}}} \sim q^{-(2d-D_{\rm s})}$	$I(Q) \sim \frac{R^{D_{\rm s}}}{Q^{2d-D_{\rm s}}} \sim Q^{-(2d-D_{\rm s})}$
ここで、 $ au$ は分散指数で、 M_z は	ここで、τ は分散指数である。ま
次式で与えられる z-平均質量 (分	た、 $h(M/M_z)$ は M/M_z の関数で、
子量) である。	M_z は次式で与えられる z -平均質
	量 (分子量) である。
I(q)	I(Q)
I(q)	I(Q)
$\Phi^2(U) \approx 1 - (1/3)R_{\mathrm{g}}^2$ となり、	$\Phi^2(U) \approx 1 - (1/3)R_{\rm g}^2 Q^2$ となり、
$\gamma(r) = \frac{\gamma}{r} \exp(-\frac{r}{\xi})$	$\gamma(r) = \frac{\xi}{r} \exp(-\frac{r}{\xi})$
(「応答」)が	(「作用」)が
	3.2 は 3.5 、 3.12 、 3.17 、 3.18 、 3.19 $f(Q)$ $\int_{V_P} \beta(\mathbf{r}') e^{-i\mathbf{Q} \cdot \mathbf{r}} \mathrm{d}^3 \mathbf{r}$ $f^*(Q) f(Q) = f(Q) ^2$ 99.8% オルト水素に遷移する。 ρ 以下に、原子 微分散乱散乱断面積 0.5 ; 茶 $\beta_2 = 0$; 青 系内の粒子体積分率 ϕ を大きくなる、 $\xi^2 q^2$ $\Xi^2 q^2$ $\log I(Q \to \infty)$ $I(Q) \sim \frac{R^{D_s}}{q^{2d-D_s}} \sim q^{-(2d-D_s)}$ ここで、 τ は分散指数で、 M_z は次式で与えられる z -平均質量(分子量)である。 $I(q)$ $I(q)$ $\Phi^2(U) \approx 1 - (1/3)R_{\mathrm{g}}^2 \mathrm{Exp}(-\frac{r}{\xi})$

表: 正誤表(続き)

頁	誤	正
page 144; 式 (4.263)	$= \frac{\text{det } S}{\sum_{ij} S_{ij} - 2\chi_{AB} \det S}$ $\times (\delta W_{B} - \delta W_{B})$	$= \frac{\det S}{\sum_{ij} S_{ij} - 2\chi_{AB} \det S} \times (\frac{\delta W_{A} - \delta W_{B}})$
page 144; 式 (4.264)	$= \frac{S_{\text{BB}}}{\sum_{ij} - 2\chi_{\text{AB}} \det S}$ $\times (\delta W_{\text{B}} - \delta W_{\text{A}})$	$= \frac{\det S}{\sum_{ij} S_{ij} - 2\chi_{AB} \det S}$ $\times (\delta W_{B} - \delta W_{A})$
page 145; 下 2 行目	文献 17) を 1 つ削除	
page 154; 図 5.5	基板からの反射。	粗い表面の散乱長密度分布。
page 156; 図 5.6	基板からの反射。	均一単一層膜の散乱長密度分布。
page 160; 図 5.12	スネルの法則。	スネルの法則(高校物理)。
page 165; 下 1 行目	相補誤差関数の定義と、の導出と	相補誤差関数の定義と
page 167; 式 (5.96)	$k_x^2 + k_z^2 = (k_x + \epsilon (^2 + \delta^2 + (\xi - k_z)^2)$	$k_x^2 + k_z^2 = (k_x + \epsilon)^2 + \delta^2 + (\xi - k_z)^2$
page 171; 10 行目	突く	撞(つ)く
page 173; 2 行目	不連続的に離れたところ現れる	幅広く現れる
page 183; 4 行目	が実験から直接	を実験から直接
page 187; 式 (6.42) の下 2 行目	第1項は	第2項は
page 188; 下 5 行目	段面積	断面積
page 191; 10 行目	1923 年	1932 年
page 197; 下 5 行目	局所線減衰計数	局所線減弱係数
page 204; 上から 2 行目	$(1 \ge E \ge 10 \text{ eV})$	$(1 \le E \le 10 \text{ eV})$
page 205; 上から 3 行目	第2章	第3章
page 215; 下 8 行目	中性子散乱装置は	中性子散乱装置の多くは
page 224; 文献 94)	https://jrr3ring.jaea.go.jp/jjoin/	https://j-join.cross.or.jp/
		表の終わり