頁	行	誤	正
iii	まえがき 本文下から 5 行目	岡山大学資源生物科学研究所の	岡山大学資源 <mark>植物</mark> 科学研究所の
	コラム 1.1 右段上から	トマト野生種で自家不和合性の雌ずい側因子	トマト近縁野生種(Solanum peruvianum syn.
		となっている RNA 分解酵素(S-RNase)は、栽	Lycopersicon peruvianum) の中には、自家不和合性
		培種では酵素活性中心で機能しているヒスチ	と自家和合性を示す個体が存在する。自家不和合性
		ジン残基がアスパラギン残基に変化すること	の雌ずい因子である RNA 分解酵素(S-RNase)遺
		で酵素活性を失い,自家和合性を示す。もちろ	伝子の解析から,活性中心のヒスチジン残基のアス
		ん、すべての種子・果実を食する作物で他殖性	パラギン残基への変化が自家和合性の原因である
		が失われているわけではなく、例えば、バラ科	ことが示された。もちろん、すべての種子・果実を
4		果樹のリンゴ、ナシ、オウトウなどは自家不和	食する作物で他殖性が失われているわけではなく、
	5~20 行目	合性を示すことから, 和合組み合わせとなる別	例えば, バラ科果樹のリンゴ・ナシ・オウトウなど
		品種の花粉親が必要となる。同様に, 葉・根を	は自家不和合性を示すため,和合組み合わせとなる
		食用とするキャベツ・ダイコンも自家不和合性	別品種の花粉親が必要となる。 一方, アブラナ科作
		形質を有している。このことは、キャベツ・ダ	物のキャベツ・ダイコンも自家不和合性であるが、
		イコンの栽培には影響しないが,自家不和合性	葉・根を食用とするため栽培には影響しない。現在
		の形質を有効に利用し,経済的な F ₁ 雑種採種	では,経済的な F ₁ 雑種採種 (第5章 5.3.2 項参照)
		(第5章5.3.2項参照) 体系が構築されている。	体系に自家不和合性形質が利用されている。
		彼女はその著書の中で、「農業というモノカル	彼女はその著書の中で、「1種類の作物だけを栽培
	コラム 1.8 左段 9~16 行目	チャー (特定の作物だけを作るという偏った形	する現代農業農業は自然生態系の中での種を保持
		態のこと)は自然生態系の中での種を保持する	するバランスを破壊する危険を有するものである」
		バランスを破壊する危険を有するものである」	と説く一方で,合成殺虫剤を全面否定しているわけ
18		と説く一方で、DDT などの合成殺虫剤を全面	ではない。DDT が感染症抑制に絶大な効力を発揮
		否定しているわけではない。DDT が感染症抑	した事実を認識する重要性も指摘している。一部に
		制に絶大な効力を発揮した事実を認識する重	は後に否定される内容も含まれているが,60年後
		要性も指摘している。60年後の今日にも…	の今日にも…
31	⊠ 2.2(a)	(a) 業原基 業項分裂組織 前形成層 散芽 (側芽) 業 無輔 所形成層 根端分裂組織 根冠	「胚」(左の赤丸)を「根」に修正
53	コラム 3.1 右段下から 2~1 行目	光合成細菌は緑色ではない。	光合成細菌は必ずしも緑色ではない。
65	下から5行目	(第4章図4.23参照)。	(第4章図4.30参照)。

67	図 3.16 説明文 下から 2 行目	反応 1 の正しい収支は 3 RuBP+2 O ₂ +CO ₂ + H ₂ O→4 PGA となる。	反応 1 の正しい収支は 3 RuBP+2 O ₂ +CO ₂ + H ₂ O→4 PGA+2-ホスホグリコール酸となる。
72	上から6行目	3 つの型*37 がある。	3つの型*41 がある。
92	コラム 3.9 右段 3~4 行目	Rubisco も C4 植物の中で特に高比活性型へと 進化しているといわれている。	Rubisco も C4 植物の中で特に高比活性型へと進化 している。
103	図 4.8	大気中の窒素	「NO ₃ ⁻ 」から「大気中の窒素」へ向かう 矢印の頭(左の赤丸)を <mark>削除</mark> ※「大気中の窒素」から「NO ₃ ⁻ 」への一方向のみ に
104	上から 6,7 行目	低濃度域ではたらく高親和性NRTIと高濃度域ではたらく低親和性NRT2が	低濃度域ではたらく高親和性 NRT2 と高濃度 域ではたらく低親和性 NRT1 が
127	上から2行目	(sugar efflux protein)	(sugar efflux transporter)
131	上から1行目3	(第9章コラム 9.3 参照)	(籾数に関しては第9 章コラム 9.7 参照)
154	コラム 5.6 左段下から 2 行目 〜右段 1 行目	放射線照射により、雌ずい側 S 因子である S-RNase遺伝子を欠損させた自家和合性のナシ品種 'おさ二十世紀'が育成されているが、	枝変わりにより、雌ずい側 S 因子である S-RNase 遺伝子が欠損した自家和合性のナシ品種 'おさ二十 世紀'が見いだされているが、
	欄外注 *4 4 最後の文章	現在も継続して採種が行われている。	現在も継続して F ₁ <mark>品種種子の</mark> 採種が行われている。
164	表 6.1 最下段	雑種第1代をF ₁ ,雑種第2代をF ₂ と	雑種第一代を F₁、雑種第二代を F₂ と
174	図 6.5	スプリンコムギ Triticum urartu 二倍体(AA) フサビコムギ Aegilops speltoides 二倍体(BB) 六倍体(AABBDD) 六倍体(AABBDD)	ヒトツブコムギ,クサビコムギ,パンコムギの各ゲ ノム右端の染色体が上下で融合しているが(左の赤 矢印),正しくはいずれも,染色体の上下がそれぞ れ分かれ,別の染色体になる。
218	コラム 9.1 左段 下から 2~1 行目	コムギやイネの生産量は約2倍に増加した。イ ネへの短稈性付与の原因は,	コムギやイネの収量は 2 倍以上に増加した (第 1 章図 1.10 参照)。イネへの短稈性付与の原因は,
232	コラム 9.7 左段 下から 4 行目	収量の違いを決めるもっとも強い遺伝的原因	<mark>籾数</mark> の違いを決めるもっとも強い遺伝的原因
	コラム 9.7 右段 上から 4 行目	増収に関わる遺伝子を	増収に <mark>直接</mark> 関わる <mark>収量構成要素の</mark> 遺伝子を

249	図 10.7 右側の図のピンク 色の丸(2 箇所)	fig	flg (アイiではなくエル1)
253	右段 [第4章 植物の 栄養 に関して] の最後の書籍	・米山忠克, 長谷川 功, 関本 均 編, 新植物 栄養・肥料学 改訂版, 朝倉書店 (2022)	・米山忠克, 長谷川 功, 関本 均 編, 新植物栄養・肥料学 改訂版, 朝倉書店 (2023) ※2023 年 4 月 5 日発売
258	作物名索引	ウメ (Japanese apricot, <i>Prunus mume</i> Sieb.)	ウメ (Japanese apricot, <i>Prunus mume</i> Siebold et Zuccarini)
		モモ (peach, Prunus persica Sieb.)	モモ (peach, Prunus persica Siebold et Zuccarini)

[2023年6月7日作成]