『カラー入門 基礎から学ぶ物理学』第1~8刷正誤表

この度は、標記書籍をお買い求めいただき誠にありがとうございました。標記書籍に誤りがありました。訂正し、深くお詫び申し上げます。

【第1刷】

ページ 数	位置	誤	正
29	15~16 行目	1時間に 1000 ワットの仕事をおこなった場合の仕事 率である 1 キロワット時(1 kWh)	<u>1キロワット (1 kW)</u>
179	問題 16.1 図	1.2 V	1.2 V 4.8 µF
268	左段 9~10 行目	$\int e^x dx = e^x + C, \int e^{ax} dx = \frac{1}{a} e^{ax} + C$	$\int e^x dx = e^x + C$
		$\int e^{f(x)} dx = \frac{1}{f(x)'} e^{f(x)} + C$	$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$

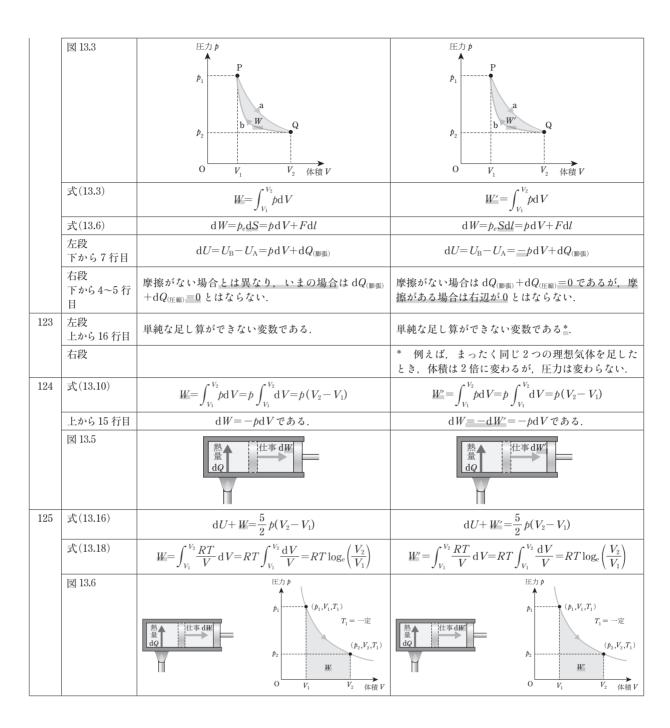
【第1刷~第2刷】

位置 右段	誤	正
下から7行目	の理想気体	の単原子分子の理想気体
右段 1 行目	(1) コイルに流れる	(1) コンデンサーに流れる
1.14	v = 4t + 10 = 18 m/s	$v = 4t + 10 = 18 \text{ m/s}, \ a = 4 \text{ m/s}^2$
1.15(2)	(2) $t = \frac{v}{a} = 7 \text{ s}$	(2) $t = \frac{v}{a} = 7.0 \text{ s}$
6.4(1)	$(1) \vec{v} = \vec{\omega} \times \vec{r} = -9\vec{i} + 6\vec{j}$	(1) $\vec{v} = \vec{\omega} \times \vec{r} = -9\vec{i} + 6\vec{j} \text{ m/s}$
6.4(2)	$(2) \vec{F} = \vec{m\omega} \times \vec{v} = -36\vec{i} - 54\vec{j}$	(2) $\vec{F} = \vec{m\omega} \times \vec{v} = -36\vec{i} - 54\vec{j} \text{ N}$
11.4	$(334+4.2+2257)\times30=7.8\times10^4 \text{ J}$	${334+4.2(100-0)+2257} \times 30$ = $9.0 \times 10^4 \text{ J}$
右段 下から6行目	Ⅲ:dW=pdV=4.8×10² J (仕事をされた)	Ⅲ:dW=pdV=-4.8×10 ² J (仕事をされた)
右段 下から4行目	II: dQ=dU-dW=2.4 J (熱を放出した)	Ⅲ: dQ=dU+dW=-1.2×10³ J (熱を放出した)
15.23	$E = \frac{a^3 \rho}{3\varepsilon_0} \frac{1}{r^2}$	$E = \frac{\rho r}{3\varepsilon_0}$
	(2) r≥aのとき	(2) $r \ge a$ の と き
	ガウスの法則より,	ガウスの法則より,
	$E = \frac{\rho r}{3\varepsilon_0}$, $E = \frac{Q}{4\pi\varepsilon_0 a^2} = 1.4 \times 10^{11} \text{ N/C}$	$E = \frac{a^3 \rho}{3 \varepsilon_0} \frac{1}{r^2}, \ E = \frac{Q}{4 \pi \varepsilon_0 a^2} = 1.4 \times 10^{11} \text{ N/C}$
17.3	$R = \frac{V}{I} = 0.88 \Omega, \ \rho = \frac{SV}{lI} = 1.6 \times 10 - 8 \Omega \cdot m$	$R = \frac{V}{I} = 0.88 \Omega, \ \rho = \frac{SV}{lI} = 1.6 \times 10^{-8} \Omega \cdot \text{m}$
17.10(4)	(4) 上から下へ <i>I</i> =2.4 A	(4) 上から下へ <i>I</i> =2.5 A
18.7	$\frac{F}{l}$ = IB = 0.23 N/m	$\frac{F}{l} = IB = 2.3 \times 10^{-4} \text{ N/m}$
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	14 15(2) 4(1) 4(2) 1.4 一段 から6行目 再段 がら4行目 5.23	$v = 4t + 10 = 18 \text{ m/s}$ $v = 4t + 10 = 18 \text{ m/s}$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$ $v = \frac{v}{a} = 7 \text{ s}$ $v = 4(1)$

【第1刷~第3刷】

ページ 数	位置	誤	正
89	式(10.7)	$\omega = \sqrt{\frac{g}{L}}, T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{L}{g}}$	$\omega = \sqrt{\frac{mgl}{I}}, T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{I}{mgl}}$
148	14.12	$\mathrm{d}H = V \mathrm{d}p + \mathrm{d}'Q,$	$\mathrm{d}H = V \mathrm{d}p + \mathrm{d}Q,$
259	右段 下から7行目	$\mathrm{d} h \! = \! \mathrm{d} q$ が成り立つので $\underline{c}_{\!\scriptscriptstyle p} \! =$	$\mathrm{d} h {=} \mathrm{d} q$ が成り立つので $C_{\! ho} {=}$
260	15.18	点 A:電場 3.1×10 ⁴ N/C,電位 3.6×10 ⁴ V 点 B:電場 1.0×10 ⁵ N/C,電位 5.1×10 ⁴ V 原点:電場 0,電位 7.2×10 ⁴ V	点 A:電場 1.8×10 ⁴ N/C,電位 0 V 点 B:電場 5.1×10 ⁴ N/C,電位 0 V 原点:電場 1.4×10 ⁵ N/C,電位 0 V

【第1刷~第4刷】


ページ 数	位置	誤	正
8	右段	その後,アクセルをさらに踏み込み,一定の加速度	その直後,アクセルをさらに踏み込み,一定の加速
	10~12 行目	で加速したところ,アクセルを踏み込んだ地点から	度で加速したところ、運転を開始した地点から

【第1刷~第5刷】

ページ 数	位置	誤	正
70	右段 13 行目	この人工衛星が円軌道を描くのに必要な速さを	この人工衛星が地表すれすれで円軌道を描くのに必 要な速さを
	左段 図 8.4 キャプ ション	第1宇宙速度	人工衛星

【第1刷~第7刷】

	Tyle = alex = Ne + alex			
ページ 数	位置	誤	正	
2	表 1.1	大きさ 10 ²⁴ 読み ヨタ 記号 Y 大きさ 10 ⁻²⁴ 読み ヨクト 記号 y	大きさ 10 ³⁰ 10 ²⁷ 10 ²⁴ 読み クエタ ロナ ヨタ 記号 Q R Y 大きさ 10 ⁻³⁰ 10 ⁻²⁷ 10 ⁻²⁴ 読み クエクト ロント ヨクト 記号 q r y	
121	左段 下から6行目、 8行目	仕事 $\mathrm{d}W$ をおこなう. 気体がピストンをゆっくり (準静的*に) 押して微小距離 $\mathrm{d}h$ だけ動かして状態を変化させたとき、気体のおこなう仕事 $\mathrm{d}W$ は気体がピストンにおよぼす力を F として、 $\mathrm{d}W = F\mathrm{d}h$ である.	仕事 $\mathrm{d}W$ をおこなう.気体がピストンをゆっくり (<u>準静的*に</u>) 押して微小距離 $\mathrm{d}h$ だけ動かして状態を変化させたとき,気体のおこなう仕事 $\mathrm{d}W$ は気体がピストンにおよぼす力を F として, $\mathrm{d}W=F\mathrm{d}h$ である.	
	式(13.2)	dW = Fdh = pSdh = pdV	dW' = Fdh = pSdh = pdV	
122	図 13.2	Eカゥ p ₁ W O V ₁ V ₂ 体積 V	E 力 p p p p p p p p p p p p p p p p p p	

【第1刷~第8刷】

ページ 数	位置	誤	Œ
81	図 9.2 キャプ ション	剛体の慢性モーメント	剛体の慣性モーメント
104	右段 下から7行目	これらの粒子は完全に静止しているのではなく, <u>つ</u> り合いの位置を中心に	これらの粒子は完全に静止しているのではなく,力 のつり合いの位置を中心に
105	左段 下から 17 行目	凝縮熱は気化熱と同じであり、凝固熱は融解熱と同 じで	凝縮熱は気化熱と同じ大きさの熱量であり, 凝固熱 は融解熱と同じ大きさの熱量で
116	右段 下から 9~10 行目	内部エネルギーは熱運動による並進の運動エネル ギー	内部エネルギーはそれぞれの分子の熱運動に対応す る並進の運動エネルギー