Contents 新しい微積分 〈上〉

Chapter 0

本書を手に取ってくれた大学生のみなさんに	
教員と一般読者のみなさんに	

大学の微積分に向かって
0.1 / 極限
0.1.1 微積分法と極限
0.1.2 数列の極限値
0.1.3 無限級数
0.1.4 関数の極限
0.1.5 関数列の極限
0.1.6 極限値の不等式
0.2 微分
0.2.1 導関数
0.2.2 微分の計算
0.2.3 関数の極値,増減,凹凸
0.3 積分
0.3.1 │ 原始関数と不定積分 8
0.3.2 不定積分の計算
0.3.3 定積分
0.3.4 定積分の基本性質
0.3.5│定積分と面積
0.3.6│定積分と不等式
0.4 │ 関数
0.4.1 三角関数
0.4.2│逆三角関数13
0.4.3 逆三角関数の導関数15
0.4.4│双曲線関数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0.5 無限大の比較
0.6 理論的な注意など······19
0.6.1 極限公式
0.6.2 微分可能性と連続性
0.6.3 中間値の定理
0.6.4 平均値の定理
0.6.5 区分求積法

章末問題	···· 26
問の解答	···· 29

章末問題解答	§	
--------	---	--

関	関数の多項式近似			
1.1	関数と多項式	5		
1.2	べき級数展開	7		
1.3	具体例による検証	9		
1.4	オイラーの公式	1		
章末問題				
	間の解答50	נ		
	章末問題解答 ······-5·	I		

Chapter 2

テ	イラー展開	3
0.1	剰余項	_
2.1		
	2.1.1 微小量の比較	3
	2.1.2 無限小の位数	5
	2.1.3 ロピタルの定理	0
22	剰余項の評価	2
2.2		-
	2.2.1 テイラーの定理	
	2.2.2 テイラーの定理の証明 ^ヘ	6
	2.2.3 テイラー展開の収束	8
	2.2.4 テイラー展開の収束域 🔶	0
音士	問題7	^
千小		
	問の解答7	-
	章末問題解答	8

Chapter 3

1	変数関数の積分法	83
3.1	広義積分	83
	3.1.1 広義積分の基本的な考え方	83
	3.1.2 区分的に連続な関数の定積分	86
	3.1.3 端点で発散する関数の定積分	88
	3.1.4 無限区間上の関数の定積分	92

3.2	複素数値関数の微積分
	3.2.1 複素数値関数
	3.2.2 指数関数
3.3	積分の評価
	3.3.1 積分を評価する原理
	3.3.2 積分の評価の応用
	3.3.3 広義積分の評価
	3.3.4 テイラー展開の剰余項 🖣 104
章末	問題108
	問の解答
	章末問題解答

曲線117
4.1 曲線と接ベクトル
4.1.1 │ 媒介変数表示
4.1.2 接ベクトル
4.1.3 弧長
4.2 弧長パラメータとその応用
4.2.1 弧長パラメータ
4.2.2 法線ベクトル
4.2.3 曲率 124
4.2.4 曲率と加速度
4.3 曲線論の応用
4.3.1 平均値の定理
4.3.2 コーシーの平均値の定理
4.3.3 コーシーの平均値の定理の証明 132
章末問題
問の解答
章末問題解答

Chapter 5

微分方程式	141
5.1 簡単な例	141
5.1.1│ 初期値問題······ 1	141
5.1.2 解とその一意性	143
5.1.3│難点とその解消 [♠]	145

	5.1.4 変数分離形	147	
5.2	自励系	149	
	5.2.1 一般的解法	150	
	5.2.2 平衡状態	153	
	5.2.3 平衡状態の安定性	156	
5.3	曲線群と微分方程式・・・・・・	158	
	5.3.1 微分方程式と曲線群	158	
	5.3.2│包絡線 ≜	159	
章末問題			
	問の解答	166	
	章末問題解答	167	

2	2階線	形微分方程式171
6.1	単振動	カの微分方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.1.1	単振動
	6.1.2	保存則
	6.1.3	保存則の応用
	6.1.4	│ 双曲線関数と微分方程式 ───────────────────────────── 173
6.2	2 一般の)場合
	6.2.1	減衰振動
	6.2.2	│単振動型方程式への帰着
	6.2.3	│線形性とその応用
	6.2.4	│臨界解 ······· 179
	6.2.5	血糖値の制御機構 ♠
章	末問題	
	問の解	答
	章末問]題解答

Chapter 7

非	斉次微分方程式	191
7.1	線形性とその応用	191
	7.1.1 1 階微分方程式の場合	191
	7.1.2 2 階微分方程式の場合	193
7.2	定数変化法	194
	7.2.1 1 階微分方程式の場合	195

	7.2.2 2 階微分方程式の場合	197				
7.3	│応用 ♠	202				
	7.3.1 電気回路	202				
	7.3.2 共振	205				
	7.3.3 血糖値の制御機構	207				
章末問題						
	問の解答	215				
	章末問題解答	216				

1変数國	劇数の積分の応用	•	 21	9
8.1.1	重心 質量と密度 力と密度		 21	9
8.2.1 8.2.2	エ級数 周期関数とフーリエ級数 - フーリエ係数の決定・・・・・・ フーリエ級数の例 ・・・・・・・		 ····· 22 ····· 22	22 25
8.3.1	分 左端点則と右端点則 台形則とシンプソン則		 23	80
問の解	答		 23	6

新しい微積分〈下〉 目次

Chapter 9	2 変数関数の微分
Chapter 10	2 変数関数の積分
Chapter 11	ベクトル場の微積分
Chapter 12	偏微分方程式
Chapter 13	実数とは何か
Chapter 14	関数の連続性とその応用
Chapter 15	ー様収束の概念とその応用