Contents \mid 新しい微積分 \langle 上 \rangle

本書を手に取ってくれた大学生のみなさんに iii
教員と一般読者のみなさんに v
Chapter 0
大学の微積分に向かって 1
0.1 極限 1
0．1．1｜微積分法と極限 1
0．1．2 数列の極限値 2
0．1．3 無限級数 2
0．1．4｜関数の極限 3
0．1．5｜関数列の極限 4
0．1．6｜極限値の不等式 4
0.2 微分 5
0．2．1｜導関数 5
0．2．2｜微分の計算 6
0．2．3｜関数の極値，増減，凹凸 7
0.3 積分 8
0．3．1｜原始関数と不定積分 8
0．3．2｜不定積分の計算 8
0．3．3｜定積分 9
0．3．4｜定積分の基本性質 10
0．3．5｜定積分と面積 10
0．3．6｜定積分と不等式 11
0.4 関数 12
0．4．1 三角関数 12
0．4．2｜逆三角関数 13
0．4．3 逆三角関数の導関数 15
0．4．4｜双曲線関数 16
0.5 無限大の比較 17
0.6 理論的な注意など 19
0．6．1 極限公式 19
0．6．2｜微分可能性と連続性 21
0．6．3｜中間値の定理 22
0．6．4 平均値の定理 22
0．6．5 区分求積法 24
章末問題 26
問の解答 29
章末問題解答 32
Chapter 1
関数の多項式近似 35
1.1 関数と多項式 35
1.2 ｜べき級数展開 37
1.3 具体例による検証 39
1.4 ｜オイラーの公式 44
章末問題 48
問の解答 50
章末問題解答 51
Chapter 2
テイラー展開 53
2.1 剰余項 53
2．1．1 微小量の比較 53
2．1．2｜無限小の位数 55
2．1．3－ロピタルの定理 60
2.2 剰余項の評価 63
2．2．1 1 テイラーの定理 63
2．2．2 ｜テイラーの定理の証明＂ 66
2．2．3 ｜テイラー展開の収束 68
2．2．4 $\boldsymbol{| c}$ テイラー展開の収束域 70
章末問題 74
問の解答 76
章末問題解答 78
Chapter 3
1 変数関数の積分法 83
3.1 広義積分 83
3．1．1 広義積分の基本的な考え方 83
3．1．2 区分的に連続な関数の定積分 86
3．1．3｜端点で発散する関数の定積分 88
3．1．4｜無限区間上の関数の定積分 92
3.2 複素数値関数の微積分 94
3．2．1｜複素数値関数 95
3．2．2｜指数関数 96
3.3 積分の評価 98
3．3．1｜積分を評価する原理 98
3．3．2｜積分の評価の応用 100
3．3．3｜広義積分の評価 101
3．3．4｜テイラー展開の剰余項＾ 104
章末問題 108
問の解答 110
章末問題解答 112
Chapter 4
曲線 117
4.1 曲線と接ベクトル 117
4．1．1 媒介変数表示 117
4．1．2 \｜接ベクトル 119
4．1．3 弧長 121
4.2 弧長パラメータとその応用 121
4．2．1 弧長パラメータ 121
4．2．2 \｜法線ベクトル 123
4．2．3｜曲率 124
4．2．4 曲率と加速度 127
4.3 曲線論の応用 ${ }^{*}$ 129
4．3．1 平均値の定理 129
4．3．2｜コーシーの平均値の定理 130
4．3．3｜コーシーの平均値の定理の証明 132
章末問題 134
問の解答 137
章末問題解答 138
Chapter 5
微分方程式 141
5.1 簡単な例 141
5．1．1｜初期値問題 141
5．1．2 解とその一意性 143
5．1．3｜難点とその解消＾ 145
5．1．4｜変数分離形 147
5.2 自励系 149
5．2．1 一般的解法 150
5．2．2 平衡状態 153
5．2．3 平衡状態の安定性 156
5.3 曲線群と微分方程式 158
5．3．1｜微分方程式と曲線群 158
5．3．2｜包絡線 159
章末問題 162
問の解答 166
章末問題解答 167
Chapter 6
2 階線形微分方程式 171
6.1 単振動の微分方程式 171
6．1．1｜単振動 171
6．1．2 保存則 172
6．1．3 保存則の応用 173
6．1．4 双曲線関数と微分方程式 173
6.2 一般の場合 174
6．2．1 減衰振動 174
6．2．2｜単振動型方程式への帰着 176
6．2．3 線形性とその応用 176
6．2．4｜臨界解 179
6．2．5 血糖値の制御機構 ${ }^{4}$ 180
章末問題 183
問の解答 187
章末問題解答 188
Chapter 7
非斎次微分方程式 191
7.1 線形性とその応用 191
7．1．1 1 階微分方程式の場合 191
7．1．2 2 階微分方程式の場合 193
7.2 定数変化法 194
7．2．1 1 階微分方程式の場合 195
7．2．2｜ 2 階微分方程式の場合 197
7.3 応用＾ 202
7．3．1｜電気回路 202
7．3．2｜共振 205
7．3．3｜血糖値の制御機構 207
章末問題 210
問の解答 215
章末問題解答 216
Chapter 8
1 変数関数の積分の応用 219
8.1 密度と重心 219
8．1．1｜質量と密度 219
8．1．2｜カと密度 220
8.2 フーリエ級数 222
8．2．1 周期関数とフーリエ級数 222
8．2．2｜フーリエ係数の決定 225
8．2．3｜フーリエ級数の例 227
8.3 数値積分 229
8．3．1｜左端点則と右端点則 230
8．3．2｜台形則とシンプソン則 231
章末問題 234
問の解答 236
章末問題解答 237
新しい微積分 $\langle\mathbf{T}\rangle \mid$ 目次
Chapter 9 ｜ 2 変数関数の微分
Chapter 10 ｜ 2 変数関数の積分
Chapter 11 ｜ベクトル場の微積分
Chapter 12 ｜偏微分方程式
Chapter 13 ｜実数とは何か
Chapter 14 ｜関数の連続性とその応用
Chapter 15 ｜一様収束の概念とその応用

