付 録

■本文に掲載しきれなかった章,節,項またはその一部分を付録として集録した。

付録1 電磁波に関する Maxwellの方程式について

第3章の(3.1), (3.2)式はそれぞれ静電気,静磁気に関する Gauss の法則である.静 電気に関する法則は、図A1.1 (a)に示すように,

(閉曲面Sから出る全電力束)=4π×(S中に存在する電荷の総和) すなわち、

$$\int_{S} \mathbf{E} \cdot \mathbf{n} \, da = 4\pi \int_{V} \rho(\mathbf{r}) dv \tag{A1.1}$$

から得られる.ここで、 $\rho(\mathbf{r})$ は位置ベクトル**r**における電荷密度である. daは閉曲面 上の微小面積で、**n**はdaに垂直で、閉曲面に対して外向きの単位ベクトル、すなわち daの法線ベクトル、積分記号の添え字SおよびVはそれぞれ面積積分、体積積分を示 す.ベクトル解析におけるGaussの発散定理を用いると

$$\int_{S} \mathbf{E} \cdot \mathbf{n} \, da = \int_{V} \operatorname{div} \mathbf{E} \, dv \tag{A1.2}$$

となる. ここで、(A1.1)、(A1.2)式より

$$\operatorname{div} \mathbf{E} = 4\pi\rho \tag{A1.3}$$

となる. 真空中では真の電荷密度 *p*(**r**) はゼロであるから (3.1) 式が得られる. (3.1) 式 は電力束が単位体積あたりから湧き出ることもないし, 吸い込まれることもないこと, すなわち**E**は定常的であることを意味する.

図A1.1(b)において,電流iはそのまわりに磁場Hを生ずるというBiot-Savert(ビオ・ サバール)の右ネジの法則に従えば,電流を含まない空間での単位体積あたりに流入 するまたは湧き出る磁場Hはゼロである.すなわちHは定常的であるから,Gaussの 静磁気の法則(3.2)式が成立することがわかる.

(3.3)式はFaradayの電磁誘導に関する実験則の微分形を示す.この実験則によれば、 図A1.2に示すように閉じた回路を貫く磁場が時間変化するとき,「閉回路に沿って誘

図A1.1 (a) 閉曲面S, 体積Vの空間に存在する荷電p(r)と閉曲面から出る電場E. (b)電流i が生じる磁場H.

図A1.2 閉じた回路に沿って誘起される起電力と閉回路を囲む閉曲面を横切る磁場H. Fは 単位の荷電に働く力.nは法線ベクトル.

起される起電力」をWと定義すると、

W=(単位の大きさの荷電を閉回路に沿って運ぶために必要な仕事) ∝-(回路を囲む閉曲面を通って流れる全磁束の時間変化)

となる.このマイナス符号は、この閉回路に誘起される電流の向きが、「この電流の つくる磁場が磁束の時間変化を打ち消す」向きであることを示す.つまり、

$$W = \oint \mathbf{F} \cdot d\mathbf{s} = \oint \mathbf{E} \cdot d\mathbf{s}$$

= $\int_{S} \operatorname{curl} \mathbf{E} \cdot \mathbf{n} \, da$ (Stokes の定理)
= $-\frac{\partial}{\partial t} \int_{S} \mathbf{H} \cdot \mathbf{n} \, da$ (A1.4)

となり、したがって curl $\mathbf{E} = -(\partial/\partial t) \mathbf{H}$ を得る. ここで上式第1式と第3式との関係は、 Faradayの発見した実験則の数学的表現である. ただし、上式の**F**は単位の荷電あた りに働く力である. Gauss単位系を用いれば、(3.3)式が得られる.

(3.4)式はMaxwellによるAmpèré (アンペール)の法則の一般化式を示す. Ampèré は真空中に存在する定常電流Jが磁場Hを生ずること,つまり

$$\operatorname{curl} \mathbf{H} = 4\pi \mathbf{J} \tag{A1.5}$$

を示した.上式の両辺にdivを演算すると、(左辺) = div curl $\mathbf{H}=0$ (ベクトル解析の公式)であるから、div $\mathbf{J}=0$ となる.したがって、(A1.5)式は定常電流 \mathbf{J} に対しては正しいが、放電電流(開いた回路を流れる電流)に対してはdiv $\mathbf{J}=0$ であるから、(A1.5)式は不完全な式である.Maxwellは \mathbf{J} に何かもう1つの項 \mathbf{X} を加え、div($\mathbf{J}+\mathbf{X}$)=0になるようにしなければならないと考えた.電流に対する連続方程式

$$\operatorname{div} \mathbf{J} = -\frac{\partial \rho}{\partial t} \tag{A1.6}$$

および静電気に対する Gauss の法則[(A1.3)式]を用いると

$$\operatorname{div} \mathbf{J} = -\frac{1}{4\pi} \operatorname{div} \frac{\partial \mathbf{E}}{\partial t}$$

図A1.3 誘電体における電場の作用. (a)誘電体中の閉曲面S上の微小面積素片 da とその拡 大図(b).1は da を通して移動する電気量の変位ベクトル.

となるので,

$$\operatorname{div}\left(4\pi\mathbf{J} + \frac{\partial\mathbf{E}}{\partial t}\right) = 0 \tag{A1.7}$$

が得られる.したがって、開いた回路を流れる電流(変位電流:displacement current)を含めた一般化したAmpèréの法則は、(A1.5), (A1.7)式より

$$\operatorname{curl} \mathbf{H} = 4\pi \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t}$$
(A1.8)

とすべきである. (A1.8)式はGauss単位系を用いると,

$$\operatorname{curl} \mathbf{H} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$
(A1.9)

となる. ここで, **J**は伝導電流, $1/(4\pi)$ ($\partial E/\partial t$) は Maxwell が導入した変位電流である. 変位電流は電導電流**J**と同様に磁場を生ずる.よって, **J**=0の場合, Maxwell が新た に導入した方程式(3.4)が得られる.

次に物質(誘電体,磁性体)中における Maxwellの方程式を考えよう.誘電体に電場 Eが加わると、その内部の任意の閉曲面Sを通して電荷の移動が生じる[図A1.3 (a)]. この移動により分極(dielectric polarization)が起こり、Sの内部に分極電荷(polarization charge)が生ずる.その分極電荷密度を $\rho'(\mathbf{r})$ とすると、 $\int_{V} \rho'(\mathbf{r}) d\mathbf{r}$ で与えられる分極 電荷が体積Vの閉曲面Sの内部に生じる.したがって、閉曲面Sから流出した電気量 $id = \int_{V} \rho'(\mathbf{r}) d\mathbf{r}$ となる。一方、電荷の変位1により閉曲面を通って流出する電気量は $\int_{S} q_c(N/V)$ (1·n) daである[図A1.3 (b)].ただし、N/Vは分子の数密度、 q_c は1分子あ たりに移動する荷電量である.したがって、1分子あたりに生ずる誘起双極子能率を分極ベクト ν (polarization vector) **P**とすると、

$$\mathbf{P} = \frac{N}{V} q_{\rm c} \mathbf{l} \tag{A1.10}$$

であるから

$$\int_{S} \frac{N}{V} q_{c}(\mathbf{l} \cdot \mathbf{n}) da = \int_{S} (\mathbf{P} \cdot \mathbf{n}) da = \int_{V} \operatorname{div} \mathbf{P} d\mathbf{r} \quad (\operatorname{Gauss} \mathcal{O} 発散定理)$$

が得られる.上式は電場の印加による分極のために誘電体の閉曲面Sを通って流出する電気量であるから、 $-\int_{v} \rho'(\mathbf{r}) d\mathbf{r}$ に等しい.したがって、

$$\operatorname{div} \mathbf{P} = -\rho' \tag{A1.11}$$

が得られる.

物質中に存在する真の電荷ρも、分極電荷ρ'も電場を生じるので、物質中での Gaussの静電気の法則は、真空中での法則に関する(A1.3)式を一般化し

$$\operatorname{div} \mathbf{E} = 4\pi (\rho + \rho') \tag{A1.12}$$

となる. (A1.11), (A1.12)式より

$$\operatorname{div} \mathbf{D} = 4\pi\rho \tag{A1.13}$$

$$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} \tag{A1.14}$$

が得られる. (A1.13)式は本文(3.7)式である. Dは電気変位ベクトル(electric displacement vector)と呼ばれる. (A1.13)式,本文(3.7)式は,物質中でのGaussの静電 気の法則である. 線形光学理論では, PはEに比例するので,

$$\mathbf{P} = \boldsymbol{\alpha}_{\mathrm{m}} \mathbf{E} \tag{A1.15}$$

と表される. 比例係数**α**_mは物質の単位体積あたりの分極率テンソル(polarizability tensor)である. 光学量**χ**を

$$\chi \equiv \frac{4\pi P}{E} = 4\pi \alpha_{\rm m} \tag{A1.16}$$

で定義すると、(A1.14)、(A1.15)式より

の関係式が得られる. (A1.17)式は本文(3.11)式の第1式である. **χ**, εはそれぞれ感受 率テンソル, 誘電率テンソルと呼ばれる.

真空中に存在する電導電流密度Jの電流は、Ampèréの法則によれば磁気誘導(magnetic induction) Bを生ずる.

$$\operatorname{curl} \mathbf{B} = 4\pi \mathbf{J} \tag{A1.18}$$

磁性体中に磁場が作用するときには、分極電流(磁化電流)が生ずる.これは、電場が 分極電荷を生ずることに対応する.この分極電流は磁化ベクトル(magnetization vector) Mをもたらす. Mは単位体積あたりの磁気モーメントであり, Pに対応する. この磁気分極により生じた分極電流密度をJ'とすると, 電場の場合の(A1.11)式に対応 して

$$\mathbf{J'} = \operatorname{curl} \mathbf{M} \tag{A1.19}$$

を得る. **J**′も**J**も**B**を生ずるので,物質中でのAmpèréの法則は, (A1.18)式の一般化 により次式

$$\operatorname{curl} \mathbf{B} = 4\pi \left(\mathbf{J} + \mathbf{J'} \right) \tag{A1.20}$$

となる. (A1.19), (A1.20)式より

$$\operatorname{curl} \mathbf{H} = 4\pi \mathbf{J} \tag{A1.21}$$

$$\mathbf{H} \equiv \mathbf{B} - 4\pi \mathbf{M} \tag{A1.22}$$

が得られる. 磁性体に対する (A1.21), (A1.22)式はそれぞれ誘電体に対する (A1.13), (A1.14)式に対応する. (A1.21)式は磁性体中でのAmpèréの法則であり, H は磁気強度, 磁場の強さ (magnetic field strength)と呼ばれる. $4\pi M \equiv \chi_m H$ とすると誘電体に対する (A1.17)式に対応して, 磁性体に対しては

を得る. (A1.23)式は本文(3.11)式の第2式である.

付録2 第8章8.1節で示した一般論の具体例:ブ ロック共重合体のラメラ状ミクロドメイン

重合度がほぼ等しいポリスチレン(PS),ポリイソプレン(PI)からなるPS-*b*-PIブ ロック共重合体(block copolymer)(*b*はblockの頭文字であり,両分子鎖の片末端が化 学結合で連結されていることを意味する)は分子量が十分大きいときには,PS分子鎖 とPI分子鎖はその化学結合点を界面に置きそれぞれの分子鎖からなるラメラ状ドメ インに凝集し,PSラメラとPIラメラの繰り返し周期構造(交互ラメラミクロドメイン 構造)を形成する[**図A2.1**(a)].図A2.1(b)は、ラメラ状ドメイン構造を有する試料の 超薄切片の透過電子顕微鏡像である¹⁾.明るいラメラ,暗いラメラがそれぞれPSラメ ラ,PIラメラである.図A2.1(c)は、ラメラ界面に対して垂直方向(*z*方向とする)の 散乱能密度のゆらぎの空間分布 Δ*p*(*z*)を示す.

$$\Delta p(z) = p_{\rm PS}(z) - p_{\rm PI}(z) \tag{A2.1}$$

ここで、 $p_K(z)$ はKラメラ(K=PSまたはPI)の散乱能密度の空間分布である.X線散乱 の場合には p_K は電子密度 $\rho_{e,K}$ で、 $\rho_{e,PS} > \rho_{e,PI}$ である. $\Delta p(z)$ はPSラメラ(厚さ2*a*とする) 中では一様で Δp_0 であり、PIラメラ(厚さ2*D*-2*a*とする)中ではゼロである.ブロッ ク共重合体分子鎖の化学結合点が配置される界面で、 $\Delta p(z)$ は Δp_0 とゼロとの2値間を

図A2.1 (a)ボリスチレンーポリイソプレンブロック共重合体(PS-*b*-PI)のラメラ状秩序構造(ミクロド メイン構造)内でのPS-*b*-PI分子鎖の充填様式を示す模式図,(b)透過電子顕微鏡像,および(c) ラメラ界面に垂直方向(z方向とする)の散乱能密度のゆらぎの空間分布.

付 録

階段状に鋭く変化する(界面厚みゼロの極限). 交互ラメラ構造は周期2Dを有するものとする.

図A2.1 (c) に示した散乱能密度のゆらぎは, Fourier 級数展開すると次式で与えられる²⁾.

$$\frac{\Delta p(z)}{\Delta p_0} = \frac{a}{D} + \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin\left(\frac{m\pi a}{D}\right) \cos\left(\frac{m\pi z}{D}\right)$$
(A2.2)

ラメラに対して垂直な方向に散乱ベクトル \mathbf{q} を設定したときの構造振幅 $F_{s}(q)$ は

$$F_{s}(q) = \int \{\Delta p(z)\} \exp(iqz) dz$$

= $\frac{a}{D} \delta(q) + \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m\pi a}{D} \int_{-\infty}^{\infty} \cos\left(\frac{m\pi z}{D}\right) \exp(iqz) dz$ (A2.3)

と表される. ここで,

$$2\cos\left(\frac{m\pi z}{D}\right) = \exp\left(-\frac{\mathrm{i}m\pi z}{D}\right) + \exp\left(\frac{\mathrm{i}m\pi z}{D}\right)$$

を用いると

$$\begin{split} &\int_{-\infty}^{\infty} \cos\left(\frac{m\pi z}{D}\right) \exp(\mathrm{i}qz) dz \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \left\{ \exp\left[\mathrm{i}\left(q - \frac{m\pi}{D}\right)z\right] + \exp\left[\mathrm{i}\left(q + \frac{m\pi}{D}\right)z\right] \right\} dz \end{split} \tag{A2.4} \\ &= \frac{1}{2} \left\{ \delta\left(q - \frac{m\pi}{D}\right) + \delta\left(q + \frac{m\pi}{D}\right) \right\} \end{split}$$

すなわち, qが

$$q = \pm \frac{m\pi}{D} \equiv \pm q_m \tag{A2.5}$$

のときに散乱極大が得られることがわかる. $q_m = (4\pi/\lambda)\sin(\theta_m/2)$ を上式に代入するとBraggの回折条件が得られる.

$$2(2D)\sin\left(\frac{\theta_m}{2}\right) = m\lambda \tag{A2.6}$$

すなわち, m次の回折極大は $\Delta p(z)/\Delta p_0$ のm次のFourierモードの回折に起因し, その回折角(Bragg角) θ_m は(A2.6)式で,回折極大を与える散乱ベクトルの絶対値 q_m は(A2.5)式で与えられることがわかる. m次の回折強度 $|F_s(q_m)|^2$ はm次のFourierスペクトル強度であり,それは(A2.3),(A2.4)式より

$$|F_{s}(q_{m})|^{2} = \frac{1}{\pi^{2}m^{2}}\sin^{2}\left(\frac{m\pi a}{D}\right)$$
$$= \left(\frac{a}{D}\right)^{2}\left[\frac{\sin(q_{m}a)}{q_{m}a}\right]^{2} = \phi^{2}\left[\frac{\sin(m\pi\phi)}{m\pi\phi}\right]^{2}$$
(A2.7)^(\meta-FA2.1)

で与えられる. ここで,

$$\phi = \frac{a}{D}$$
 (PS ラメラドメインの体積分率) (A2.8)

である.上式より m次の散乱極大の値が ϕ に依存することがわかる. ϕ =1/2のときに は、2次(m=2)の散乱極大値は m $\pi\phi$ = π となるので消滅する. ϕ =1/3のときには3次 の極大が消滅する.一般に m次の極大が消滅し、他の次数の極大が観察されていれ ば ϕ =1/mであることがわかる.回折強度は mの増大とともに m⁻²に応じて漸近的に 減少する.これはラメラ構造が z方向に完全に配向し、その方向に散乱ベクトル qを 設定して散乱を観測するという特殊な条件の下に成立する.ベクトル qに対してラメ ラ界面の法線ベクトルが配向分布を有するときには、配向分布の大小にかかわらずそ の漸近挙動は m⁻⁴に依存する[Lorenz factor (ローレンツ因子)、9.6.4項参照].

□□ 付録2ノート

ノートA2.1 ■ m次の回折強度を与える(A2.7)式の証明

(A2.3), (A2.4)式より

$$F_{\rm s}(q) = \frac{a}{D}\delta(q) + \frac{1}{\pi}\sum_{m=1}^{\infty}\frac{1}{m} \sin\left(\frac{m\pi a}{D}\right) \left\{\delta\left(q - \frac{m\pi}{D}\right) + \delta\left(q + \frac{m\pi}{D}\right)\right\}$$

が得られる. m次の回折極大は $q = q_m = \pm (m\pi/D)$ で発現するので,

$$F_{\rm s}(q_m) = \frac{1}{m\pi} \sin \frac{m\pi a}{D} = \frac{a}{D} \frac{\sin q_m a}{q_m a} = \phi \frac{\sin(m\pi\phi)}{m\pi\phi}$$

付録2文献

[引用文献]

1) T. Hashimoto, H. Tanaka, and H. Hasegawa, *Macromolecules*, 18, 1864–1868 (1985)

2) T. Hashimoto, Y. Tsukahara, and H. Kawai, Macromolecules, 14, 708-711 (1981)

付録3 第9章 孤立散乱についての補足

付録3.1 ■回転楕円体の構造振幅に関する(9.24)式の導出

本文(9.18), (9.20)式より

$$|J| = \begin{vmatrix} r \cos \alpha \cos \phi & -r \sin \alpha \sin \phi & \sin \alpha \cos \phi \\ -r \cos \alpha \cos \phi & r \sin \alpha \sin \phi & \sin \alpha \cos \phi \\ -v_a r \sin \alpha & 0 & v_a \cos \alpha \end{vmatrix}$$
(A3.1)

$$= v_a r^2 \sin \alpha$$

また(9.18), (9.21) ~ (9.23)式より
(**q** · **r**) = qr $\left(\sin \frac{\theta}{2} \sin \alpha \cos \phi - \cos \frac{\theta}{2} \sin \mu \sin \alpha \sin \phi - v_a \cos \frac{\theta}{2} \cos \mu \cos \alpha \right)$ (A3.2)
ここで, 次のように定義する.

$$\tilde{q} = qr$$

$$A = \sin \frac{\theta}{2} \sin \alpha$$

$$B = \cos \frac{\theta}{2} \sin \mu \sin \alpha$$

$$C = v_a \cos \frac{\theta}{2} \cos \mu \cos \alpha$$

(**q** · **r**) = $\tilde{q} \left\{ \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \cos \phi - \frac{B}{\sqrt{A^2 + B^2}} \sin \phi \right) - C \right\}$ (A3.4)

$$\sqrt{A^2 + B^2} = \left(\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} \sin^2 \mu \right)^{1/2} \sin \alpha$$
(A3.5)

また

$$\sin \beta \equiv \frac{A}{\sqrt{A^2 + B^2}}$$

$$\cos \beta \equiv \frac{B}{\sqrt{A^2 + B^2}}$$
(A3.6)

とすると

$$(\mathbf{q} \cdot \mathbf{r}) = -\tilde{q} \left\{ \sqrt{A^2 + B^2} \sin(\phi - \beta) + C \right\}$$
(A3.7)

(A3.1), (A3.7) 式を(9.19) 式に代入すると

$$F_{s}(\mathbf{q}) = v_{a}(p_{s} - p_{m}) \int_{r=0}^{R} \int_{\alpha=0}^{\pi} \left\{ \int_{\phi=0}^{2\pi} \exp[i\tilde{q}\sqrt{A^{2} + B^{2}}\sin(\phi - \beta)]d\phi \right\} \exp(i\tilde{q}C)r^{2}\sin\alpha d\alpha dr$$
(A3.8)

上式右辺の¢に関する積分を $\mathscr{I}(\alpha, r)$ とし、 $\phi - \beta \equiv t$ とすると $\mathscr{I}(\alpha, r) = \int_{t=0}^{2\pi} \cos\left[\tilde{q}\sqrt{A^2 + B^2}\sin t\right] dt + i \int_{t=0}^{2\pi} \sin\left[\tilde{q}\sqrt{A^2 + B^2}\sin t\right] dt$ (A3.9)

 $\cos(z \sin t)$, $\sin(z \sin t)$ にJacobiの展開を用いると

$$\cos(z\sin t) = J_0(z) + 2\sum_{n=1}^{\infty} J_{2n}(z)\cos 2nt$$

$$\sin(z\sin t) = 2\sum_{n=1}^{\infty} J_{2n+1}(z)\sin(2n+1)t$$
(A3.10)

ここで, *J_i(z*)は*i*次の第一種Bessel関数である. (A3.9), (A3.10)式より

$$\mathscr{I}(\alpha, \mathbf{r}) = 2\pi J_0(\tilde{q}\sqrt{A^2 + B^2})$$
(A3.11)

(A3.8), (A3.11)式より次式を得る.

$$F_{\rm s}(\mathbf{q}) = 2\pi v_{\rm a}(p_{\rm s} - p_{\rm m}) \int_{r=0}^{R} \left\{ \int_{\alpha=0}^{\pi} J_{0}(\tilde{q}\sqrt{A^{2} + B^{2}}) \exp(i\tilde{q}C) \sin\alpha d\alpha \right\} r^{2} dr \qquad (A3.12)$$

(A3.12)式で α に関する積分を $\mathscr{I}(\tilde{q})$ とすると、 $\mathscr{I}(\tilde{q})$ は(A3.3)式の第4式、(A3.5)式より

$$\mathscr{I}(\tilde{q}) = \int_{\alpha=0}^{\pi} J_0 \left\{ \tilde{q} \left(\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} \sin^2 \mu \right)^{1/2} \sin \alpha \right\} \exp\left(i \tilde{q} v_a \cos \frac{\theta}{2} \cos \mu \cos \alpha \right) \sin \alpha d\alpha$$
(A3.13)

ここで、便宜上次のような変数を定義する.

$$\sin \psi \equiv \frac{\{\sin^2(\theta/2) + \cos^2(\theta/2)\sin^2\mu\}^{1/2}}{\{1 + (v_a^2 - 1)\cos^2(\theta/2)\cos^2\mu\}^{1/2}}$$

$$\cos \psi \equiv \frac{v_a \cos(\theta/2)\cos\mu}{\{1 + (v_a^2 - 1)\cos^2(\theta/2)\cos^2\mu\}^{1/2}}$$

$$q^* \equiv \tilde{q}\{1 + (v_a^2 - 1)\cos^2(\theta/2)\cos^2\mu\}^{1/2}$$
(A3.14)

(A3.14)式を用いると(A3.13)式は次のようになる.

$$\mathcal{I}(\tilde{q}) = \int_{\alpha=0}^{\pi} J_0(q^* \sin \psi \sin \alpha) \exp(i q^* \cos \psi \cos \alpha) \sin \alpha d\alpha$$
$$= \int_{\alpha=0}^{\pi} \cos(q^* \cos \psi \cos \alpha) J_0(q^* \sin \psi \sin \alpha) \sin \alpha d\alpha$$
$$+ i \int_{\alpha=0}^{\pi} \sin(q^* \cos \psi \cos \alpha) J_0(q^* \sin \psi \sin \alpha) \sin \alpha d\alpha$$
(A3.15)

(A3.15)式はGegenbauerの公式を用いて次のように解くことができる.

Gegenbauerの公式
(1)
$$\int_{0}^{\pi} \cos(q^{*}\cos\psi\cos\alpha) J_{\nu-1/2}(q^{*}\sin\psi\sin\alpha) C_{r}^{\nu}(\cos\alpha) \sin^{\nu+1/2}\alpha d\alpha$$
$$=\begin{cases} (-1)^{r/2} \left(\frac{2\pi}{q^{*}}\right)^{1/2} \sin^{\nu-1/2}\psi C_{r}^{\nu}(\cos\psi) J_{\nu+r}(q^{*}) & (r \, t^{s} \mathfrak{B} \mathfrak{Y} \mathfrak{O} \succeq \mathfrak{E}) \\ 0 & (r \, t^{s} \mathfrak{F} \mathfrak{Y} \mathfrak{O} \succeq \mathfrak{E}) \end{cases}$$
(A3.16)

(2)

$$\begin{split} &\int_{0}^{\pi} \sin(q^{*}\cos\psi\cos\alpha) J_{\nu-1/2}(q^{*}\sin\psi\sin\alpha) C_{r}{}^{\nu}(\cos\alpha) \sin^{\nu+1/2}\alpha d\alpha \\ &= \begin{cases} 0 & (r\, \mathfrak{N}^{\mathfrak{s}} (\operatorname{glue}) \mathfrak{S} \mathfrak{S}) \\ (-1)^{(r-1)/2} \left(\frac{2\pi}{q^{*}}\right)^{1/2} \sin^{\nu-1/2} \psi C_{r}{}^{\nu}(\cos\psi) J_{\nu+r}(q^{*}) & (r\, \mathfrak{N}^{\mathfrak{s}} \widehat{\mathrm{G}} \mathfrak{M} \mathcal{O} \succeq \mathfrak{S}) \end{cases} \end{split}$$
(A3.17)

ここで、 $C_r^{\nu}(x)$ はGegenbauerの多項式である.v=1/2, r=0に対してGegenbauerの公式(A3.16)、(A3.17)式を適用すると、

$$C_0^{1/2}(\cos\alpha) = 1 \tag{A3.18}$$

また, rは偶数であるから,

$$\int_{0}^{\pi} \cos(q^* \cos \psi \cos \alpha) J_0(q^* \sin \psi \sin \alpha) \sin \alpha d\alpha = \left(\frac{2\pi}{q^*}\right)^{1/2} J_{1/2}(q^*)$$
(A3.19)

$$\int_{0}^{\pi} \sin(q^* \cos \psi \cos \alpha) J_0(q^* \sin \psi \sin \alpha) \sin \alpha d\alpha = 0$$
(A3.20)

したがって、(A3.15), (A3.19), (A3.20)式より

$$\mathscr{I}(\tilde{q}) = \left(\frac{2\pi}{q^*}\right)^{1/2} J_{1/2}(q^*)$$
(A3.21)

半奇数次のBessel関数は次のようにも表される.

$$J_{1/2}(q^*) = \left(\frac{2}{\pi q^*}\right)^{1/2} \sin q^* \tag{A3.22}$$

ゆえに

$$\mathscr{I}(\tilde{q}) = \frac{2}{q^*} \sin q^* \tag{A3.23}$$

(A3.12), (A3.23)式より

$$F_{\rm s}(\mathbf{q}) = 4\pi v_{\rm a}(p_{\rm s} - p_{\rm m}) \int_{r=0}^{R} \frac{\sin q^{*}}{q^{*}} r^{2} dr \qquad (A3.24)$$

いま

$$U^* = \tilde{q} \left(\frac{R}{r}\right) \left[1 + (v_a^2 - 1)\cos^2\frac{\theta}{2}\cos^2\mu\right]^{1/2}$$
(A3.25)

と定義すると、(A3.14)式の第3式、(A3.25)式より

$$\frac{q^*}{U^*} = \frac{r}{R} \tag{A3.26}$$

したがって

$$r^{2}dr = \frac{R^{3}}{(U^{*})^{3}} (q^{*})^{2} dq^{*}$$
(A3.27)

(A3.24), (A3.27)式より

$$F_{\rm s}(\mathbf{q}) = \left(\frac{4\pi v_{\rm a} R^3}{3}\right) (p_{\rm s} - p_{\rm m}) \frac{3}{(U^*)^3} \int_0^{U^*} q^* \sin q^* dq^*$$
(A3.28)

回転楕円体に対する(A3.28)式は,球に対する第9章(9.4)式と同型であることがわかる.ただし,Uの代わりにU*が用いられている.したがって,第9章(9.24)式が得られる.

付録3.2 ■ 特定の配向(β, γ)を有する回転楕円体の構造振幅に関す る(9.45)式の導出

図9.9において回転楕円体がその回転軸Ozをベクトルqに対して(β , γ)なる配向を 有して存在しているときの散乱振幅, 散乱強度式それぞれ(9.45), (9.47)式を誘導する.

(9.42), (9.43)式より

$$(\mathbf{q} \cdot \mathbf{r}) = qr[(\sin\alpha\cos\phi)(\mathbf{e}_1 \cdot \mathbf{k}) + (\sin\alpha\sin\phi)(\mathbf{e}_2 \cdot \mathbf{k}) + (v_a\cos\alpha)(\mathbf{e}_3 \cdot \mathbf{k})]$$
(A3.29)

図9.9より明らかに

$$(\mathbf{e}_1 \cdot \mathbf{k}) = -\sin\beta$$

$$(\mathbf{e}_2 \cdot \mathbf{k}) = 0$$

$$(\mathbf{e}_3 \cdot \mathbf{k}) = \cos\beta$$

(A3.30)

であるので、(9.20), (9.41), (A3.29), (A3.30)式より

$$F_{\rm s}(\mathbf{q};\boldsymbol{\beta},\boldsymbol{\gamma}) = v_{\rm a}(p_{\rm s} - p_{\rm m}) \int_{r=0}^{R} \int_{\alpha=0}^{\pi} \int_{\phi=0}^{2\pi} \exp\left[-iqr(-\sin\beta\sin\alpha\cos\phi)\right] + v_{\rm a}\cos\beta\cos\alpha) r^{2}\sin\alpha\,dr\,d\alpha\,d\phi$$
(A3.31)

(A3.31)式は付録3.1と同様に解くことができる.いま

$$\sin \psi \equiv \frac{\sin \beta}{(\sin^2 \beta + v_a^2 \cos^2 \beta)^{1/2}}$$

$$\cos \psi \equiv \frac{v_a \cos \beta}{(\sin^2 \beta + v_a^2 \cos^2 \beta)^{1/2}}$$

$$\tilde{q}_1 \equiv qr(\sin^2 \beta + v_a^2 \cos^2 \beta)^{1/2}$$
(A3.32)

と定義すると

$$qr\sin\beta = \tilde{q}_1 \sin\psi$$

$$qv_a r\cos\beta = \tilde{q}_1 \cos\psi$$
(A3.33)

である. (A3.31), (A3.33)式より

$$F_{\rm s}(\mathbf{q};\boldsymbol{\beta},\boldsymbol{\gamma}) = v_{\rm a}(\boldsymbol{p}_{\rm s} - \boldsymbol{p}_{\rm m}) \int_{r=0}^{R} \int_{\alpha=0}^{\pi} \int_{\phi=0}^{2\pi} \exp\left[-i\tilde{q}_{1}(-\sin\psi\sin\alpha\cos\phi + \cos\psi\cos\alpha)\right]r^{2}\sin\alpha\,dr\,d\alpha\,d\phi$$
(A3.34)

(A3.10)式に対応して

$$\cos(z\cos t) = J_0(z) + 2\sum_{n=1}^{\infty} (-1)^n J_{2n}(z)\cos 2nt$$

$$\sin(z\cos t) = 2\sum_{n=0}^{\infty} (-1)^n J_{2n+1}(z)\cos(2n+1)t$$
(A3.35)

を用いて(A3.34)式を¢について解くと

$$F_{\rm s}(\mathbf{q};\boldsymbol{\beta},\boldsymbol{\gamma}) = 2\pi v_{\rm a}(\boldsymbol{p}_{\rm s} - \boldsymbol{p}_{\rm m}) \int_{r=0}^{R} \left\{ \int_{\alpha=0}^{\pi} \cos(\tilde{q}_{1}\cos\psi\cos\alpha) J_{0}(\tilde{q}_{1}\sin\psi\sin\alpha)\sin\alpha d\alpha - \mathrm{i} \int_{\alpha=0}^{\pi} \sin(\tilde{q}_{1}\cos\psi\cos\alpha) J_{0}(\tilde{q}_{1}\sin\psi\sin\alpha)\sin\alpha d\alpha \right\} r^{2} dr$$
(A3.36)

付録3.1と同様にGegenbauerの公式を利用して α について積分し、さらに \tilde{q}_1 について 積分をすると(9.45)~(9.47)式が得られる.

付録3.3 ■ ランダムに配向した回転楕円体の換算散乱強度に関する (9.53)式の導出

(9.47), (9.51), (9.52)式より

$$\begin{split} I_{\rm av}(q) &= \frac{1}{2} K_3 V_{\rm ellip}{}^2 (p_{\rm s} - p_{\rm m})^2 \int_0^{\pi} \Phi^2(U^*) \sin\beta \, d\beta, \quad K_3 = I_{\rm i} / R_{\rm D}{}^2 \\ U^* &= q R [\sin^2\beta + v_{\rm a}{}^2 \cos^2\beta]^{1/2} \\ \Phi^2(U) &= \{3(\sin U - U\cos U) / U^3\}^2 \\ &= (q\pi/2) \{J_{3/2}(U) / U^{3/2}\}^2 \end{split}$$
(A3.37)

 $\Phi^2(U)$ は、以下の演算を用いて(A3.42), (A3.43)式に示すように一般化された超幾何 級数(generalized hypergeometric function)によっても表される.

$$\{J_{3/2}(U)/U^{3/2}\}^2 = J_{3/2}^2(U)/U^3$$

= $\frac{1}{U^3} \sum_{m=0}^{\infty} (-1)^m \frac{(2m+2)!!U^{2m+3}}{m!(m+3)!(2m+3)!!}$ (A3.38)

いま

$$\begin{split} (2m+2)!! &= (2m+2)(2m)(2m-2)\cdots 4\cdot 2 \\ &= 2^{m+1}(m+1)! = 2^{m+1} \varGamma(m+2) \end{split} \tag{A3.39}$$

また

$$\begin{aligned} (2m+3)!! &= (2m+3)(2m+1)(2m-1)\cdots 5\cdot 3\cdot 1 \\ &= 2^{m+2}\,\Gamma(m+\frac{5}{2})/\sqrt{\pi} \end{aligned} \tag{A3.40}$$

さらに

$$(2)_{m} = \frac{\Gamma(m+2)}{\Gamma(2)}$$

$$\left(\frac{5}{2}\right)_{m} = \frac{\Gamma(m+\frac{5}{2})}{\Gamma(\frac{5}{2})}, \quad \Gamma(\frac{5}{2}) = \frac{3\sqrt{\pi}}{4}$$
(A3.41)

である. ここで, Γはガンマ関数である.

(A3.39)~(A3.41)式を用いると(A3.38)式は次のようになる.

$$\{J_{3/2}(U)/U^{3/2}\}^2 = \frac{1}{9} \sum_{m=0}^{\infty} \frac{(2)_m}{(\frac{5}{2})_m (4)_m} \frac{(-U^2)^m}{m!}$$

$$= \frac{1}{9} {}_1F_2(2; \frac{5}{2}, 4; -U^2)$$
(A3.42)

ここで、 $_{p}F_{q}$ は一般化された超幾何級数であり、次式で定義される.

$${}_{p}F_{q}(\alpha_{1},\alpha_{2},\cdots,\alpha_{p};\beta_{1},\beta_{2},\cdots,\beta_{q};z) = \sum_{m=0}^{\infty} \frac{(\alpha_{1})_{m}(\alpha_{2})_{m}\cdots(\alpha_{p})_{m}}{(\beta_{1})_{m}(\beta_{2})_{m}\cdots(\beta_{q})_{m}} \frac{z^{m}}{m!}$$
(A3.43)

(A3.37), (A3.42)式より

ここで

$$I_{\rm av}(q) = \frac{\pi}{4} K_3 V_{\rm ellip}^{\ 2} (p_{\rm s} - p_{\rm m})^2 \int_{\beta=0}^{\pi} {}^{1}F_2(2; \frac{5}{2}, 4; -U^{*2}) \sin\beta d\beta \qquad (A3.44)$$

$$U^{*2} = U^2 (\sin^2 \beta + v_a^2 \cos^2 \beta)$$

いま $\cos\beta = t$ とすると $-\sin\beta d\beta = dt$ であり,

$$U^{*2} = U^2 \{ 1 + (v_a^2 - 1)t^2 \}$$

となり、(A3.44)式は次式のようになる.

$$I_{av}(q) = \frac{\pi}{4} K_3 V_{ellip}{}^2 (p_s - p_m)^2 \int_{t=-1}^{1} F_2(2; \frac{5}{2}, 4; -U^2 \{1 + (v_a{}^2 - 1)t^2\}) dt$$

$$= \frac{\pi}{2} K_3 V_{ellip}{}^2 (p_s - p_m)^2 \sum_{m=0}^{\infty} \frac{(2)_m}{(\frac{5}{2})_m (4)_m} \frac{(-U^2)^m}{m!} \int_0^1 \{1 + (v_a{}^2 - 1)t^2\}^m dt$$
(A3.45)

{ }‴を2項級数に展開して項別積分を行うと

$$\begin{split} &\int_{0}^{1} \{1 + (v_{a}^{2} - 1)t^{2}\}^{m} dt \\ &= (v_{a}^{2} - 1)^{m} \int_{0}^{1} \left(\frac{1}{v_{a}^{2} - 1} + t^{2}\right)^{m} dt \\ &= (v_{a}^{2} - 1)^{m} \int_{0}^{1} \sum_{n=0}^{\infty} {}_{m} C_{n} \left(\frac{1}{v_{a}^{2} - 1}\right)^{n-n} t^{2n} dt \\ &= (v_{a}^{2} - 1)^{m} \sum_{n=0}^{\infty} {}_{m} C_{n} \frac{(v_{a}^{2} - 1)^{n-m}}{2n+1} \\ &\left({}_{m} C_{n} = \frac{m!}{(m-n)! n!} \notin \mathbb{H} \lor \mathcal{F} \notin \mathcal{F} \end{pmatrix} \\ &= \sum_{n=0}^{\infty} \frac{m!}{(m-n)! n!} \frac{(v_{a}^{2} - 1)^{n}}{2n+1} \\ &= \sum_{n=0}^{\infty} (-1)^{n} \frac{m!}{(m-n)!} \frac{(1 - v_{a}^{2})^{n}}{n! (2n+1)} \\ &\left((-1)^{n} \frac{m!}{(m-n)!} = (-1)^{n} m(m-1)(m-2) \cdots \{m - (n-1)\} \\ &= (-m)(-m+1)(-m+2) \cdots (-m+n-1) \\ &= (-m)_{n} \\ &\notin \pi \parallel \mathbb{H} \downarrow \mathcal{T} \end{split} \right) \end{split}$$

$$\begin{pmatrix} \frac{(2n-1)!!}{(2n+1)!!} = \frac{\frac{2^n}{\sqrt{\pi}} \binom{1}{2}_{2n} \Gamma(\frac{1}{2})}{\frac{2^{n+1}}{\sqrt{\pi}} \binom{3}{2}_n \Gamma(\frac{3}{2})} = \frac{\binom{1}{2}_{2n}}{\binom{3}{2}_n} \stackrel{*}{\mathcal{E}} \mathfrak{N} \mathbb{H} \mathfrak{F} \mathfrak{F} \mathfrak{E} \mathfrak{E} \end{pmatrix}$$

$$= \sum_{n=0}^{\infty} \frac{(-m)_n \binom{1}{2}_{2n}}{\binom{3}{2}_n} \frac{(1-v_a^2)^n}{n!}$$

$$= {}_2F_1(-m, \frac{1}{2}; \frac{3}{2}; 1-v_a^2)$$
(A3.46)

ここで、 $_{2}F_{1}(-m, \frac{1}{2}; \frac{3}{2}; 1-v_{a}^{2})$ はGaussの超幾何級数であり、 $F(-m, \frac{1}{2}; \frac{3}{2}; 1-v_{a}^{2})$ とも表される.

(A3.45), (A3.46)式より, 回転楕円体のランダム配向系に対する平均散乱強度に関 する一般式は, 次式で与えられる.

$$I_{\rm av}(q) = \frac{\pi}{2} K_3 V_{\rm ellip}{}^2 (p_{\rm s} - p_{\rm m})^2 \sum_{m=0}^{\infty} \frac{(2)_m}{(\frac{5}{2})_m (4)_m} \frac{(-U^2)^m}{m!} F(-m, \frac{1}{2}; \frac{3}{2}; 1 - v_{\rm a}{}^2)$$
(A3.47)

ー般式(A3.47)に基づいて、小角つまりUの小さな領域での散乱に対する近似式を求めよう. *m*=0および1の2項までとると

$$\begin{split} I_{\rm av}(q) & \cong \frac{\pi}{2} K_3 V_{\rm ellip}{}^2 (p_{\rm s} - p_{\rm m})^2 \left\{ F(0, \frac{1}{2}; \frac{3}{2}; 1 - v_{\rm a}{}^2) \right. \\ & \left. + \frac{(2)_1}{(\frac{5}{2})_1(4)_1} (-U^2) F(-1, \frac{1}{2}; \frac{3}{2}; 1 - v_{\rm a}{}^2) \right\} \end{split} \tag{A3.48}$$

いま

$$\frac{(2)_1}{\binom{5}{2}_1(4)_1} = \frac{\Gamma(2+1)}{\Gamma(2)} \frac{\Gamma(\frac{5}{2})}{\Gamma(\frac{5}{2}+1)} \frac{\Gamma(4)}{\Gamma(4+1)} = \frac{2!}{1!} \frac{\frac{3}{4}\sqrt{\pi}}{\frac{6!}{2^63!}\sqrt{\pi}} \frac{3!}{4!} = \frac{1}{5}$$
(A3.49)

またGaussの超幾何級数に対する公式

$$F(-\alpha, \beta, \beta; z) = (1-z)^{\alpha}$$
(A3.50)

および漸化式

$$\gamma\{F(\alpha,\beta+1,\gamma;z) - F(\alpha,\beta,\gamma;z)\} = \alpha z F(\alpha+1,\beta+1,\gamma+1;z)$$
 (A3.51)

を用いて、 $\alpha = 0, \beta = 1/2, \gamma = 3/2 と すると$ $\frac{3}{2} \{ F(0, \frac{3}{2}, \frac{3}{2}; z) - F(0, \frac{1}{2}, \frac{3}{2}; z) \} = 0$ したがって

$$F(0, \frac{1}{2}, \frac{3}{2}; z) = F(0, \frac{3}{2}, \frac{3}{2}; z) = (1 - z)^{0} = 1$$
(A3.52)

また, $\alpha = -1, \beta = 1/2, \gamma = 3/2$ とすると

$$\frac{3}{2} \{ F(-1, \frac{3}{2}, \frac{3}{2}; z) - F(-1, \frac{1}{2}, \frac{3}{2}; z) \} = -zF(0, \frac{3}{2}, \frac{5}{2}; z)$$
(A3.52a)

および $\alpha=0,\beta=3/2,\gamma=5/2$ とすると

$$\frac{5}{2} \{ F(0, \frac{5}{2}, \frac{5}{2}; z) - F(0, \frac{3}{2}, \frac{5}{2}; z) \} = 0$$
 (A3.52b)

(A3.52a), (A3.52b)式より次式を得る.

$$F(-1, \frac{3}{2}, \frac{3}{2}; z) - F(-1, \frac{1}{2}, \frac{3}{2}; z) = -\frac{2}{3}zF(0, \frac{5}{2}, \frac{5}{2}; z)$$
(A3.53)

ゆえに

$$F(-1, \frac{1}{2}, \frac{3}{2}; z) = F(-1, \frac{3}{2}, \frac{3}{2}; z) + \frac{2}{3}zF(0, \frac{5}{2}, \frac{5}{2}; z)$$

(A3.50)式を用いると,

$$=(1-z)^{1}+\frac{2}{3}z(1-z)^{0}=\frac{3-z}{3}$$

 $z \equiv 1 - v_{\rm a}^2 \, \varepsilon \, \mathsf{z} \, \mathsf{z} \, \mathsf{z},$

$$=\frac{3-(1-v_{a}^{2})}{3}=\frac{2+v_{a}^{2}}{3}$$
(A3.54)

(A3.48), (A3.49), (A3.52), (A3.54)式より

$$I_{av}(q) = \frac{\pi}{2} K_3 V_{\text{ellip}}{}^2 (p_{\text{s}} - p_{\text{m}})^2 \left(1 - \frac{1}{5} q^2 R^2 \frac{2 + v_{\text{a}}^2}{3} + \cdots \right)$$

$$\approx \frac{\pi}{2} K_3 V_{\text{ellip}}{}^2 (p_{\text{s}} - p_{\text{m}})^2 \exp\left(-\frac{1}{5} q^2 R^2 \frac{2 + v_{\text{a}}^2}{3} \right)$$
(A3.55)

付録3.4 ■ 円柱状散乱体に対する構造振幅を表す(9.63)式の導出

(9.58), (9.59), (9.62)式より

$$(\mathbf{r} \cdot \mathbf{q}) = -\rho q \cos \phi \sin \beta + qz \cos \beta \tag{A3.56}$$

(9.60), (9.61), (A3.56)式より

$$F_{\rm s}(q,\beta,\gamma) = (p_{\rm s} - p_{\rm m}) \int_{\rho=0}^{R} \rho \, d\rho \int_{\phi=0}^{2\pi} \exp(\mathrm{i}q\rho\cos\phi\sin\beta) d\phi \int_{z_2=-H}^{H} \exp(-\mathrm{i}qz\cos\beta) dz$$

(A3.35)式を利用して¢について積分すると

$$= 2\pi(p_{s} - p_{m}) \int_{\rho=0}^{R} J_{0}(q\rho\sin\beta)\rho d\rho \left\{ \frac{\exp[(-iq\cos\beta)z]}{-iq\cos\beta} \Big|_{z=-H}^{H} \right\}$$

$$= 2\pi(p_{s} - p_{m}) \left\{ \frac{\rho}{q\sin\beta} J_{1}(q\rho\sin\beta) \Big|_{\rho=0}^{R} \right\} \left\{ \frac{\exp(-iqH\cos\beta) - \exp(iqH\cos\beta)}{-iq\cos\beta} \right\}$$

$$= 4\pi(p_{s} - p_{m})H \frac{R}{q\sin\beta} J_{1}(qR\sin\beta) \frac{\sin(qH\cos\beta)}{qH\cos\beta}$$

$$= 4\pi R^{2} H(p_{s} - p_{m}) \frac{J_{1}(qR\sin\beta)}{qR\sin\beta} \frac{\sin(qH\cos\beta)}{qH\cos\beta}$$
(A3.57)

 $V=2\pi R^2 H$ (円柱の体積)とすれば, (9.63)式が得られる.

付録3.5 ■ 散乱強度分布の漸近挙動とそのクロスオーバーに及ぼす 散乱体の配向分布の効果

9.6.3項で形状異方性の大きい散乱体からの散乱強度の*q*依存性に関する漸近挙動と そのクロスオーバーに関して,散乱体が3次元空間でランダムに配向する場合につい て議論した.本項では散乱体の配向分布が,漸近挙動とそのクロスオーバーに及ぼす 効果について検討する¹⁾.

9.4.2項の議論より、qの方向を基準軸とした円柱の配向分布関数 $P_0(\beta, \gamma)$ を、議論の簡略化のために基準軸に関して一軸対称分布とすると、 $P_0(\beta, \gamma)$ は β のみの関数となり、円柱状散乱体の干渉因子 $P_{cvl}(q)$ は、(9.63)式より

$$P_{\rm cyl}(q) = \frac{\int_0^{\pi} P_{\rm O}(\beta) P_{\rm cyl}(q;\beta) \sin\beta \, d\beta}{\int_0^{\pi} P_{\rm O}(\beta) \sin\beta \, d\beta}$$
(A3.58)

$$P_{\text{cyl}}(q;\beta) = 4 \frac{\sin^2(qH\cos\beta)}{(qH\cos\beta)^2} \frac{J_1^2(qR\sin\beta)}{(qR\sin\beta)^2}$$
(A3.59)

で与えられる.ここで、 P_0 の添え字Oは配向(orientation)の頭文字である.実際には 図 9.4 (a)の実験座標系OXYZを用いて方位角 $\mu = 0^{\circ}$ での散乱強度の θ またはq依存性を 測定すれば、小角散乱ではqはほぼOZ軸に平行になる.つまり配向分布 $P_0(\beta)$ が、 $\mu = 0^{\circ}$ での散乱強度(子午線上での散乱強度)分布に及ぼす効果を検討できる.

(A3.59)式右辺の各項を級数展開すると

$$P_{\text{cyl}}(q;\beta) = 1 - \left(\frac{1}{3}H^2\cos^2\beta + \frac{1}{4}R^2\sin^2\beta\right)q^2 + \left(\frac{2}{45}H^4\cos^4\beta + \frac{1}{12}H^2R^2\cos^2\beta\sin^2\beta + \frac{5}{192}R^4\sin^4\beta\right)q^4 - O(q^6)$$
(A3.60) (\mathcal{V} - \beta A3.1)

を得る. そして(A3.60)式を(A3.58)式に代入すると,

$$\begin{split} P_{\rm cyl}(q) &= 1 - \left(\frac{1}{3}H^2 \langle \cos^2\beta \rangle + \frac{1}{4}R^2 \langle \sin^2\beta \rangle \right) q^2 \\ &+ \left(\frac{2}{45}H^4 \langle \cos^4\beta \rangle + \frac{1}{12}H^2 R^2 \langle \cos^2\beta \sin^2\beta \rangle + \frac{5}{192}R^4 \langle \sin^4\beta \rangle \right) q^4 - O(q^6) \end{split} \tag{A3.61}$$

が得られる.ここで、 $\langle \cos^n \beta \sin^m \beta \rangle$ は

$$\langle \cos^{n}\beta\sin^{m}\beta\rangle = \frac{\int_{0}^{\pi}P_{0}(\beta)\cos^{n}\beta\sin^{m}\beta\sin\beta\,d\beta}{\int_{0}^{\pi}P_{0}(\beta)\sin\beta\,d\beta}$$
(A3.62)

で定義され,配向分布関数P₀(β)に依存する.

上記の議論より円柱状散乱体の干渉因子は配向分布に依存した以下に示す2つの長 さのスケールH_{eff}およびR_{eff}で近似的に取り扱えることがわかる.

$$H_{\rm eff} \equiv H \langle \cos^2 \beta \rangle^{1/2}, \quad R_{\rm eff} \equiv R \langle \sin^2 \beta \rangle^{1/2}$$
 (A3.63)

$$\langle \cos^{2}\beta \rangle = \begin{cases} 1 & (完全配向系) \\ \frac{1}{3} & (ランダム配向系) \end{cases}$$
(A3.64)

$$\langle \sin^{2}\beta \rangle = 1 - \langle \cos^{2}\beta \rangle = \begin{cases} 0 & (完全配向系) \\ \frac{2}{3} & (ランダム配向系) \end{cases}$$
(A3.65)

したがって、ランダム配向系の回転半径を決める2つの長さのスケール $H/\sqrt{3}$ と $R/\sqrt{2}$ の代わりに、配向系では近似的にそれぞれ $H_{\text{eff}}\sqrt{3}R_{\text{eff}}/2$ を用いればよいことになる[後述、(A3.74)式参照].

以上の議論より配向系、ランダム配向系に共通な $P_{cyl}(q)$ のq依存性の漸近挙動とそのクロスオーバーを表A3.1のようにまとめることができる。ここでは漸近挙動を表す配向系の $P_{cyl}(q)$ のべき乗則を次式で示す。

$$P_{\rm cvl}(q) \sim q^{-\gamma} \tag{A3.66}$$

9.6.3項の議論では、γは領域[I]では0,領域[II]ではp1,領域[III]ではp2と定義された.

散乱体の形状		q領域	γ	備考
細長い円柱	[I]	$q\!<\!q_{H_{ m eff}}^{*}$	0	Guinier領域
$H_{\mathrm{eff}}{\gg}R_{\mathrm{eff}}$	[II]	$q_{H_{ m eff}}^{*} \!\ll\! q \!\ll\! q_{R_{ m eff}}^{*}$	1	Porodの法則(形状、マスフラクタル次元)
	[III]	$q_{R_{ m eff}}^* \!\ll\! q$	4	Porodの法則(界面)
$H_{\rm eff} \cong R_{\rm eff}$ の円柱	[I]	$q\!\ll\!q_{H_{\mathrm{eff}}}^*\!\cong\!q_{R_{\mathrm{eff}}}^*$	0	Guinier領域
	[III]	$q_{H_{\mathrm{eff}}}^{*} \cong q_{R_{\mathrm{eff}}}^{*} \ll q$	4	Porodの法則(界面)
薄い円板	[I]	$q\!\ll\!q_{R_{ m eff}}^{*}$	0	Guinier領域
$H_{ m eff}{\ll}R_{ m eff}$	[II]	$q_{R_{ m eff}}^* \!\ll\! q \!\ll\! q_{H_{ m eff}}^*$	2	Porodの法則(形状、マスフラクタル次元)
	[III]	$q_{H_{ m eff}}^{*} \!\ll\! q$	4	Porodの法則(界面)

表A3.1 円柱状散乱体のPcvl(q)のべき乗則とそのクロスオーバー

これら p_1, p_2 の値は表A3.1に示した。細長い円柱に対しては $p_1=1, p_2=4$ 、薄い円板に対しては $p_1=2, p_2=4$ である。表A3.1において、異なるべき乗則(漸近挙動)間のクロスオーバーが発現するqの値 $q_{H_{eff}}^*$ および $q_{R_{eff}}^*$ は次式で定義されるように円柱状散乱体の配向に依存する。

$$q_{H_{\text{eff}}}^* = \frac{1}{H_{\text{eff}}}, \quad q_{R_{\text{eff}}}^* = \frac{1}{R_{\text{eff}}}$$
 (A3.67)

上記円柱状散乱体からの散乱に関するべき乗則とクロスオーバーの概念は、回転楕円体状散乱体についても適用可能である.配向分布を有する回転楕円体の配向平均干渉因子を*P*_{FR}(*q*)とすると、

$$P_{\rm ER}(q) = \frac{\int_0^{\pi} P_{\rm O}(\beta) P_{\rm ER}(q;\beta) \sin\beta \, d\beta}{\int_0^{\pi} P_{\rm O}(\beta) \sin\beta \, d\beta}$$
(A3.68)

と表される.ここで, $P_{\text{ER}}(q;\beta)$ は任意の配向角 β をもつ回転楕円体の干渉因子であり, (9.46), (9.48)式で与えられる.極小角領域での $P_{\text{ER}}(q;\beta)$ は次式で与えられる.

$$P_{\rm ER}(q;\beta) = \Phi^2(U^*) = 1 - \frac{1}{5}U^{*2} + O(U^{*4}) \tag{A3.69}$$

(9.46), (A3.68), (A3.69)式より P_{ER}(q) は次式で与えられる.

$$\begin{split} P_{\rm ER}(q) &= 1 - \frac{1}{5} q^2 R^2 \frac{\int_0^{\pi} P_0(\beta) [v_a^{\ 2} \cos^2 \beta + \sin^2 \beta] \sin \beta \, d\beta}{\int_0^{\pi} P_0(\beta) \sin \beta \, d\beta} + O(q^4) \\ &= 1 - \frac{1}{5} [v_a^{\ 2} R^2 \langle \cos^2 \beta \rangle + R^2 \langle \sin^2 \beta \rangle] q^2 + O(q^4) \end{split}$$
(A3.70)

上式で q^4 の項まで計算すれば、円柱状散乱体の P_{cyl} に対する(A3.61)式に対応した式が得られる.

付 録

配向した円柱の場合と同様に,配向した回転楕円体の場合にもその配向分布に依存 した2つの特性長さ(*v*_a*R*)_{eff}および*R*_{eff}が存在し,それらは次式で定義される.

$$(v_{\rm a}R)_{\rm eff} = v_{\rm a}R\langle\cos^2\beta\rangle^{1/2}, \quad R_{\rm eff} = R\langle\sin^2\beta\rangle^{1/2} \tag{A3.71}$$

また次式で定義される2種類の配向に依存したクロスオーバーq値, $q^*_{(v_a R)_{eff}} \ge q^*_{R_{eff}}$ が存在する.

$$q^*_{(v_a R)_{\text{eff}}} \equiv \frac{1}{(v_a R)_{\text{eff}}}, \quad q^*_{R_{\text{eff}}} = \frac{1}{R_{\text{eff}}}$$
 (A3.72)

表A3.1において以下の読み替えをすれば、表A3.1は回転楕円体状散乱体の干渉因子 $P_{\text{ER}}(q)$ のべき乗則とそのクロスオーバーをも記述する.

細長い円柱 → 細長い回転楕円体 (prolate ellipsoid of revolution) および 薄い円板 → 扁平回転楕円体 (oblate ellipsoid of revolution) $H_{\text{eff}} \rightarrow (v_{a}R)_{\text{eff}}, q_{H_{\text{eff}}}^{*} \rightarrow q_{(v_{a}R)_{\text{eff}}}^{*}, H_{\text{eff}} \cong R_{\text{eff}} \mathcal{O}$ 円柱 $\rightarrow (v_{a}R)_{\text{eff}} = R_{\text{eff}} = R_{\text{s}} \mathcal{O}$ 球

上記3行目の読み替えは細長い回転楕円体,扁平回転楕円体に共通である. R_{eff} ($\equiv R \langle \sin^2 \beta \rangle^{1/2}$)は2つの散乱体に対して等しく定義される.

(A3.61), (A3.63)式より極小角領域でのP_{cyl}(q)は、配向系に対しては次式で表される P_{cvl,G}(q)

$$P_{\text{cyl,G}}(q) \cong \exp\left[-\frac{1}{3}\left(H_{\text{eff}}^2 + \frac{3}{4}R_{\text{eff}}^2\right)q^2\right]$$

$$= \exp\left[-\frac{1}{3}R_{\text{g,cyl,orient}}^2q^2\right]$$
(A3.73)

となり、配向系に対するGuinierの法則を得る.ここで、 $R_{g,cyl,orient}$ は配向系を含んだ 一般化された円柱状散乱体の回転半径であり、次式で定義される.

$$R_{g,cyl,orient}{}^{2} = H_{eff}{}^{2} + \frac{3}{4} R_{eff}{}^{2}$$

$$= H^{2} \langle \cos^{2} \beta \rangle + \frac{3}{4} R^{2} \langle \sin^{2} \beta \rangle$$

$$= \begin{cases} \frac{H^{2}}{3} + \frac{R^{2}}{2} & (\bar{\mathcal{P}} \lor \mathcal{P} \vartriangle \vec{\mathbb{R}} \mid \bar{\mathcal{R}}) \\ H^{2} & (\beta = 0 \ \mathcal{O} : \bar{\mathcal{R}} \rightleftharpoons \vec{\mathbb{R}}) \end{cases}$$
(A3.75)

(A3.75)式の第1式は円柱状散乱体の回転半径としてよく知られた式である.ここで 極小角領域で重要な q^2 の項は、(A3.74)式の第2式より配向分布の2次のモーメント $\langle \cos^2 \beta \rangle, \langle \sin^2 \beta \rangle$ のみに依存することがわかる. 同様に回転楕円体に対して,配向系をも含めた一般化Guinierの法則は(A3.70)式の 第2式,(A3.71)式より

$$P_{\text{ER,G}}(q) \approx \exp\left[-\frac{1}{5}\{(v_{a}R)_{\text{eff}}^{2} + R_{\text{eff}}^{2}\}q^{2}\right]$$

$$= \exp\left(-\frac{1}{3}R_{\text{g,ER,orient}}^{2}q^{2}\right)$$
(A3.76)

で与えられる.したがって、散乱実験から求められる配向系を含んだ一般化された回転 楕円体の回転半径 R_{g,ER,orient}は

$$\begin{split} R_{g,\text{ER,orient}}^{2} &= \frac{3}{5} \{ (v_{a}R)_{\text{eff}}^{2} + R_{\text{eff}}^{2} \} \\ &= \frac{3}{5} \{ (v_{a}R)^{2} \langle \cos^{2}\beta \rangle + R^{2} \langle \sin^{2}\beta \rangle \} \end{split} \tag{A3.77} \\ &= \begin{cases} \left(\frac{v_{a}^{2} + 2}{5} \right) R^{2} & (\bar{\gamma} \succ \beta \land \text{配向系}) \\ \frac{3(v_{a}R)^{2}}{5} & (\beta = 0 \ \mathcal{O}) 完全 \text{配向系}) \end{cases} \end{split}$$

となる. (A3.78)式の第1式は,回転楕円体の正しい回転半径を与える. 配向系では, (A3.71)式,(A3.77)式の第2式で示されるように極小角領域での散乱実験から求めら れるのは配向分布の2次のモーメント $\langle \cos^2 \beta \rangle$, $\langle \sin^2 \beta \rangle$ に依存した実効の回転半径で あることに注意が必要である.

配向分布により、領域[I]から[II]への第1のクロスオーバーが起こるq値を $q_{1,cyl}^*(\equiv 1/R_{g,cyl}), q_{1,ER}^*(\equiv 1/R_{g,ER})$ とすると、これらの特性値は配向分布の2次のモーメントの大きさに応じて変化する。一方、領域[II]から[III]への第2のクロスオーバーが起こるq値である q_2^* は、一般に2次のモーメントのみならず高次のモーメント、すなわち配向分布全体に依存するが、 q_2^* 値の配向依存性に関する傾向は、定性的には、2次のモーメントで十分表すことができる。例えば表A3.1の細長い円柱に対しては、 $q_2^*=q_{R_{eff}}^*=1/R_{eff}=1/(R\langle\sin^2\beta\rangle^{1/2})$ で与えられる。配向度が増加するにつれて $\langle\sin^2\beta\rangle \to 0$ となるから $q_2^* \to \infty$ となり、界面に関するPorodの法則の成立する領域[III]は、大q領域に移動し、やがて観測のq範囲の外に移ることに注意を要する。

🛄 付録3ノート--

ノートA3.1 ■ (A3.60)式の証明

$$\begin{aligned} \frac{\sin^2 z}{z^2} &= 1 - \frac{1}{3}z^2 + \frac{2}{45}z^4 - O(z^6) \\ J_1^2(z) &= \frac{1}{4} \left\{ z^2 - \frac{1}{4}z^4 + \frac{5}{192}z^6 - O(z^8) \right\} \end{aligned}$$

を用いると $P_{cyl}(q; \beta)$ として(A3.60)式を得る.

付録3文献

[引用文献]

 M. Shibayama, S. Nomura, T. Hashimoto, and E. L. Thomas, J. Appl. Phys., 66, 4188– 4197 (1987)

付録4 第10章 ゆらぎと散乱:散乱の統計理論 と散乱体の統計的評価についての補足事項

付録 4.1 ■ 特性界面厚みが △ R である台形型散乱能密度分布をもった 球状粒子の散乱

この場合の散乱強度 $I_{\text{psd,s}}(q)$ は、(9.3)式より次式のように表される.

$$I_{\text{psd},s}(q) = K_3 \left| \int_0^\infty [p_{\text{psd},s}(r)] \frac{\sin qr}{qr} 4\pi r^2 dr \right|^2$$

$$p_{\text{psd},s}(r) = p_{\text{id},s}(r) * h(r)$$
(A4.1)

また, 界面で**図A4.1**の挿入図のように*p*(*r*)が台形型散乱能密度分布をもった球状粒 子の散乱は次式で表される*p*_{psd,s}(*r*)

$$p_{\rm psd,s}(r) = \begin{cases} \Delta p & (0 \le r \le R_{\rm s} - (\Delta R/2) \ \mathcal{O} \succeq \overset{*}{\ge}) \\ -\frac{\Delta p}{\Delta R} [r - (R_{\rm s} + \Delta R/2)] & (R_{\rm s} - (\Delta R/2) \le r \le R_{\rm s} + (\Delta R/2) \ \mathcal{O} \succeq \overset{*}{\ge}) \\ 0 & (r \ge R_{\rm s} + (\Delta R/2) \ \mathcal{O} \succeq \overset{*}{\ge}) \end{cases}$$
(A4.2)

を(A4.1)式に代入して解くことができる¹⁾.

図A4.1 半径*R*_s,界面厚み∆*R*の孤立球の形状因子*i*≡*I*_{pds,s}(*q*)/(*K*₃∆*p*²)と大*q*領域の漸 近挙動¹⁾.

$$\begin{split} \frac{I_{\text{psd},s}(q)}{K_{3}\Delta p^{2}{V_{s}}^{2}} = & \left\{ \left(\frac{1}{2} - \frac{R_{s}}{\Delta R}\right) \Phi \left(U_{s} - \frac{\Delta U}{2}\right) + \left(\frac{1}{2} + \frac{R_{s}}{\Delta R}\right) \Phi \left(U_{s} + \frac{\Delta U}{2}\right) \right. \\ & \left. - \frac{1}{\Delta R} \left[\Psi \left(U_{s} + \frac{\Delta U}{2}\right) - \Psi \left(U_{s} - \frac{\Delta U}{2}\right) \right] \right\}^{2} \end{split}$$
(A4.3)

ここで、上式の左辺は干渉因子 $P_{\text{psd,s}}(q)$ に等しく、 $U_{\text{s}} = qR_{\text{s}}, \Delta U = q\Delta R, V_{\text{s}} = 4\pi R_{\text{s}}^{3}/3, \Phi(U_{\text{s}}) = 3(\sin U_{\text{s}} - U_{\text{s}} \cos U_{\text{s}})/U_{\text{s}}^{3}$ であり、また

$$\Psi(U_{\rm s}) = 4\pi \{ 2U_{\rm s} \sin U_{\rm s} - (U_{\rm s}^2 - 2) \cos U_{\rm s} - 2 \} q^{-4}$$
(A4.4)

である. (A4.3)式をTaylor展開すると,次式を得る.

$$P_{\rm psd,s}(q) = \left(\frac{3}{U_{\rm s}^3}\right)^2 \left\{ (\sin U_{\rm s} - U_{\rm s} \cos U_{\rm s})^2 + \frac{1}{12} (\sin^2 U_{\rm s} - U_{\rm s}^2 \cos^2 U_{\rm s}) \Delta U^2 + O(\Delta U^4) \right\}$$
(A4.5) (7-1-1)

上式の右辺第1項は半径 R_s , ΔR =0の1個の球による散乱を与え,第2項以下が ΔR の影響を与える.上式は $q \rightarrow \infty$ の極限では

$$\lim_{q \to \infty} P_{\text{psd},\text{s}}(q) = \frac{9}{2U_{\text{s}}^4} \left[1 - \frac{1}{12} \left(\frac{\Delta R}{R_{\text{s}}} \right)^2 U_{\text{s}}^2 + O(\Delta U^4) \right] \quad (A4.6)^{(\prime - \beta A4.1)}$$

となる. 上式と(10.214)式とを比較すると

$$\Delta R = 2\sqrt{3\sigma} \tag{A4.7}$$

となり、板状粒子の場合の式(10.224)と同一の式が得られる.

図A4.1には、台形型散乱能密度分布をもった孤立球の散乱強度分布を(A4.3)式に 基づき数値計算した結果を示す. $\Delta R/R_s$ の増大(0, 0.05, 0.1, 0.2)にともない漸近曲線 は U_s の大きな領域で下方に下がることがわかる. また $\Delta R/R_s$ の増大(0.05, 0.2)にとも なう形状因子極大の減少も高次の極大ほど大きいことがわかる.

界面厚みの実験的評価で最も重要なことは、大q領域で実存する**熱散漫散乱**(thermal diffuse scattering, TDS) **強度** $I_{TDS}(q)$ を正確に評価し、観測散乱強度 $I_{obs}(q)$ からそ の寄与を精密に差し引くことにある。固体または凝縮系における熱散漫散乱は次の付 録4.2で示すように系に実在する縦型フォノン(縦型振動モード)による密度ゆらぎで あり、一般にqの増大とともに増大する。小角散乱領域では、次式で近似されている。

$$I_{\text{TDS}}(q) = aq^n + b \tag{A4.8}$$

または

$$I_{\rm TDS}(q) = \alpha \exp\left(\beta q^2\right) \tag{A4.9}$$

ここで、 a, b, α, β は正の定数で、(A4.8)式はVonkの半経験則²⁾、(A4.9)式はRulandら

図A4.2 PS-b-PIブロック共重合体(SI-8, 全分子量200×10³, PIのwt%は13, PIの球状ミクロドメインを形成)の小角散乱の広角領域での観測散乱強度分布(I_{obs}, 黒丸)⁴, (A4.8)式を用いて観測散乱強度分布と最適化したSI-8のTDS(I_{TDS}, 実線), PSおよびPIホモポリマーのTDS測定から評価されたTDS(I_{TDSP5/PF} 白丸).

の近似式³⁾である. 10.7.1項で議論した擬2相系の散乱 $I_{s,psd}(q)$ [(10.204)式]または 10.7.2項で議論した界面厚みをもった粒子の散乱 $I_{s,psd,p}(q)$ [(10.214)式]の解析は

$$[I_{s,psd}(q) \ddagger t l \ddagger I_{s,psd,p}(q)] = I_{obs}(q) - I_{TDS}(q)$$
(A4.10)

に基づいて行われる.

図A4.2は、球状ミクロドメイン構造を有するポリスチレン-ポリイソプレンブロッ ク共重合体(PS-b-PI)の小角散乱の広角度領域の観測散乱強度分布 Iobs(黒丸データ 点)と(A4.8)式を用いて*I*_{obs}に最適化したPS-*b*-PIの*I*_{TDS}(実線)を示す⁴⁾. *I*_{TDS}(*q*)の正 確な評価のために、 I_{obs} を散乱角 θ に関して、 θ =300分(孤度)程度までのかなり広角 度まで測定した. さらに不純物を除去精製した均質なポリスチレン(PS). ポリイソ プレン(PI)ホモポリマーフィルムのTDS[それぞれ $I_{\text{TDSPS}}(q), I_{\text{TDSPI}}(q)$]を測定して、 それらをPS-b-PIの重量組成で平均することでTDS強度I_{TDS,PS/PI}を求め、I_{obs}, I_{TDS}と 比較した。3種類の強度分布は*θ*≥130分(孤度)以上で良く一致することが判明した。 したがって、 $I_{obs}[\theta \ge 130 \text{ } G(孤 g)]$ は、純粋にTDSの寄与のみを含むことがわかる. I_{TDS}(q)の最適化は(A4.9)式を用いても、(A4.8)式と同一のレベルで可能であることも わかった. $I_{sosd}(q)$ の解析は I_{obs} から I_{TDS} を差し引いた残りの $\theta < 120$ 分(孤度)の小角散 乱強度分布からなされる. $I_{\text{TDS}} \geq I_{\text{TDS}PS/PI} \sigma \theta > 120$ 分(孤度) ($q > 1.42 \text{ nm}^{-1}, \lambda =$ 0.154 nm). すなわち $r < 2\pi/q = 4.4$ nmの空間スケールでは、与えられた PS-b-PI 試料 のPSドメイン、PIドメイン内でのTDSは、対応するホモポリマー試料のTDSに等し いことを示唆しており興味深い、ちなみに、この試料の小角X線散乱を用いた精密解 析によれば、このブロック共重合体は、PI球がPS媒体中に体心立方格子を形成する 秩序構造をとり、球の平均半径は9.4 nm, (110) 面間隔は35.3 nm, 界面厚み∆R= 1.7±0.2 nmである。界面領域の体積分率は9.4±1.9%と小さく。界面領域のTDSに

図A4.3 界面相の厚みの評価における(a)界面の波打ち効果および(b)ドメイン寸法の分布の 効果.

及ぼす寄与は比較的小さいと推察できる.

界面厚み評価における, 図A4.3に模式的に示した(a)界面の波打ち効果, および(b) ドメイン寸法の分布の効果についての定性的な考察を以下に加える. 界面の波打ち効 果は, 界面に垂直な方向における密度勾配または組成勾配と区別されなければならな い. (a)において,「滑らかな界面」をもった粒子に対してr₁がその界面に垂直な方向 の密度勾配を調査するための正しい「物指」であるとすると,「粗い界面」をもった 粒子に対してはこのr₁は正しい物指ではなくなる. なぜならば, この場合r₁を用いれ ば界面凹凸自体が散乱に寄与するので, 界面の凹凸と「界面厚み」とを分離して評価 することができなくなるためである. この場合,調査に用いる物指をさらに小さく, つまりr₂を界面の曲率半径の最小値より小さくする必要がある.

この新しい尺度r₂で構造を調査する限り,界面は図10.31 (a)の左図の粒子のように 「滑らか」であり,界面に垂直方向における密度勾配,組成勾配と関連した界面厚み を正しく評価することができる.粗い界面は広角側での散乱強度を増加させる [(10.205)式においてSを増加させる]こと,Porodの法則の成立する領域をより広角 度側に移行させることの2つの効果を有する.なぜならば,観測する物指をr₁からr₂ に小さくすることは,逆関係の原理より,観測する散乱角を大きくすることに対応し ているからである.寸法の分布の効果についても同様の効果が存在する.

最後にPorodの法則からの逸脱を利用して、正しく界面の厚みを測定するためには、 界面厚みのパラメータ σ が σ <a(粒子の寸法)なる条件を満足することが必要である ことを付言しておく.この場合、 σ の効果が現れるqはq~1/ σ ≫1/aであり、Porod の法則の成立する範囲に存在する.しかし σ が大きくなるとともにPorodの法則領域 のq領域[III]に到達する前に、すなわちよりqの小さい側の領域[I],[II](第8章図8.4 参照)で $\exp(-q^2\sigma^2)$ による散乱強度の減衰が大きくなり、散乱強度レベルが低下しす ぎてしまうことになる. したがって、Porodの法則の成立する領域でPorodの法則か らの逸脱に関する解析は、もはや不可能となってしまう. このような厚い界面の測定 は別の方法によらなければならない.

付録4.2 ■ 熱散漫散乱とその物性論への応用

付録4.2.1 ■ 液体の熱散漫散乱

等方性液体に関してN個の粒子(原子または分子を含む)からなる体積Vの領域について考えよう.ここで、体積Vは入射波により照射されている液体の体積であり、粒子数Nは熱運動により平均数(N)のまわりで揺動しているものとする.集合体を形成する粒子が形状異方性を有していたとしても、粒子の配向に相関がないときには、系の構造因子|F_s(q)|²は次式で与えられる[11.3節(11.40)式].

$$\frac{|F_{s}(q)|^{2}}{\langle N \rangle} = \langle |F|^{2} \rangle - |\langle F \rangle|^{2} + |\langle F \rangle|^{2} \mathcal{I}(q)$$

$$\mathcal{I}(q) = 1 - \frac{1}{v_{1}} \int_{0}^{\infty} \{1 - P(R)\} \frac{\sin qR}{qR} 4\pi R^{2} dR$$
(A4.11)

ここで、 $v_1 = V/\langle N \rangle$ は粒子1個あたりが粒子集合体中で占める平均の体積、P(R)は粒子の動径分布関数(一端に粒子が存在するとき、それより距離Rだけ離れた他端にも粒子が存在するという条件付確率)である。Fは粒子の構造振幅、 $\langle |F|^2 \rangle$ および $\langle F \rangle$ は粒子の寸法、形状、散乱能の分布に関する $|F|^2$ およびFの平均値である。

(A4.11)式において干渉因子 $\mathcal{J}(q)$ の $\underline{q} \rightarrow 0$ での極限(熱力学極限)を $\mathcal{J}(0)$ とすると, lim[(sin qR)/(qR)]=1であるから

$$\mathcal{J}(0) = 1 - \frac{1}{v_1} \int_0^\infty \{1 - P(R)\} 4\pi R^2 dR$$
(A4.12)

付録4.2の記号

いま、一端Oに粒子が存在するとき、その粒子を中心として $R \sim R + dR$ の球殻中に存 在する粒子の数は $P(R) 4\pi R^2 dR/v_1$ であるから、1個の粒子に着目したとき、その粒子 を中心とした粒子の対の総数は $\int dR 4\pi R^2 P(R)/v_1$ となる.これに $\langle N \rangle$ をかけたものは 粒子対の全数となり、これは $\langle N(N-1) \rangle$ に等しいので、

$$\langle N \rangle \int dR 4\pi R^2 P(R) / v_1 = \langle N(N-1) \rangle \tag{A4.13}$$

が得られる.また、 $\int_0^{\pi} dR 4\pi R^2 / v_1 = \langle N \rangle$ であることに注意すると(A4.12)、(A4.13)式より

$$\begin{split} \mathcal{I}(0) &= \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \\ &= Fl_{\rm pl} \quad (粒子数のゆらぎ) \end{split} \tag{A4.14}$$

となる. (A4.14)式の右辺は,統計力学の教えるところによれば $\rho_p k_B T \kappa_T$ となり,次 式が得られる.ここで, ρ_p は粒子の数密度, κ_T は液体の等温圧縮率である.

$$\mathscr{I}(0) = \rho_{\rm p} k_{\rm B} T \kappa_T \tag{A4.15}$$

いま、粒子がすべて等価であるとすると
 $|F|^2\rangle = |\langle F\rangle|^2 = |F|^2$ であるから、(A4.11) 式の第1式より

$$\mathscr{I}(0) = \lim_{q \to 0} \left\{ \frac{|F_{s}(q)|^{2}}{\langle N \rangle |F(q)|^{2}} \right\}$$

したがって,

$$\mathcal{J}(0) = \frac{I_{\rm s}(0)}{\langle N \rangle I_{\rm p}(0)} \equiv F l_{\rm p,l} \tag{A4.16}$$

が得られる. (A4.16)式においては $I_s(q) = (I_i/R_D^2) |F_s(q)|^2 = K_3 |F_s(q)|^2$ の関係を用い, | $F_s(q)|^2$ を直接測定が可能な実験量 $I_s(q)$ で置き換えた. $I_s(0)$ および $I_p(0)$ は $q \rightarrow 0$ におけるそれぞれ粒子系および粒子1個あたりの散乱強度である. $I_p(0)$ は $I_p(0) = K_3 |F_p(q=0)|^2 = K_3 \partial \Sigma_p(q=0) / \partial \Omega$ [第4章(4.54)式参照]で与えられる. ここで, $\partial \Sigma_p(q=0) / \partial \Omega$ は粒子1個あたりのq=0での微分散乱断面積である.

小角X線散乱の場合には、I_p(0)は次式で表される.

$$I_{\rm p}(0)_{\rm X-ray} = Z_{\rm p}^{2} I_{\rm e} \tag{A4.17}$$

ここで、 Z_p は粒子1個あたりの総電子数、 I_e は1個の電子の散乱強度である. (A4.16) 式より

$$\mathcal{J}(0) = \frac{I_{\rm s}(0)}{I_{\rm e}Z_{\rm p}^{\ 2}\langle N \rangle} = \frac{I_{\rm eu}(0)}{\langle N \rangle Z_{\rm p}^{\ 2}} \tag{A4.18}$$

ここで、 $I_{eu}(0) \equiv I_s(0) / I_e$ は、系の散乱強度を1個の電子の散乱強度で規格化し、電子単位 (electron units) で表した散乱強度である.

光散乱の場合には,

$$I_{\text{p,light}}(0) = K_3 k_{s,0}^{4} \alpha_{p}^{2} \sin^2 \gamma$$
 (A4.19)

α_pは粒子1個あたりの分極率である。中性子散乱の場合には、

$$I_{\rm p,neutron}(0) = K_3 B_{\rm p}^{\ 2} \tag{A4.20}$$

B_pは粒子1個あたりの散乱長である.

熱揺動による照射体積中の粒子数のゆらぎをFl_{nl}とすると(A4.14), (A4.15)式より,

$$Fl_{\rm p,l} = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} = \rho_{\rm p} k_{\rm B} T \kappa_T(T) \tag{A4.21}$$

照射体積V中の電子数N。は

 $N_{\rm e} = N Z_{\rm p}$

で与えられる.また、体積V中の電子数のゆらぎを

$$Fl_{\rm e,l} = \frac{\langle N_{\rm e}^2 \rangle - \langle N_{\rm e} \rangle^2}{\langle N_{\rm e} \rangle} \tag{A4.22}$$

と定義すると、 $Fl_{e,l} = Z_p Fl_{p,l}$. $Fl_{p,l} tt (A4.14)$, (A4.18)式より $I_{eu}(0) / (\langle N \rangle Z_p^2)$ で与えられる. したがって

$$Fl_{\rm e,l} = \frac{I_{\rm eu}(0)}{\langle N \rangle Z_{\rm p}} = \frac{I_{\rm eu}(0)}{\langle N_e \rangle}$$
(A4.23)

となる. $Fl_{p,l}$ は粒子(原子または分子)の数のゆらぎであり、 $Fl_{e,l}$ は電子の数のゆらぎ を示し、それぞれq=0における eu 単位で示した散乱強度 $I_{eu}(0)$ と(A4.18)、(A4.23)式 の関係をもつ. (A4.16)、(A4.23)式は液体の熱散漫散乱を与える.

一般に熱運動によるゆらぎは、1)「エントロピーのゆらぎ」と2)「圧力のゆらぎ」
 とからなり、前者はRayleigh (レイリー)散乱、後者はBrillouin (ブリルアン)散乱の原因となる⁵⁾.
 しかしながら、X線のエネルギーでは両者の寄与の分離は困難であるので、X線では1)のゆらぎと2)のゆらぎの和を観測することになる.

付録4.2.2 ■ **固体の熱散漫散乱**

結晶中での密度のゆらぎは、格子波(フォノン、phonon)⁶⁾による、熱散漫散乱 (thermal diffuse scattering, TDS)に寄与する成分は縦振動モード(縦型格子振動, longitudinal lattice vibration)であり、さらに $q \rightarrow 0$ では長波長の縦型フォノンのみが散乱 に寄与する⁷⁾. X線のTDSについての理論³⁾に従えば、固体中での縦型フォノンによ る電子の数のゆらぎ Fl_{es} は

図A4.4 種々の純粋物質の散乱強度 $I_{s}(\theta)$ の散乱角 θ (孤度)依存性(Rathieら³⁾).

$$Fl_{\rm e,s} = \frac{I_{\rm eu}(0)}{\langle N_{\rm e} \rangle} = \frac{\rho_{\rm e} k_{\rm B} T}{\rho_{\rm m} v_{\rm l}^{2}(\mathbf{e})}$$
(A4.24)

と表される.ここで、 ρ_e は電子密度、 ρ_m は質量密度、 $v_l(\mathbf{e})$ は散乱ベクトル**q**に平行 な方向の縦型格子波の位相速度(phase velocity)である.**e**は縦型格子波の振動方向を 示す単位ベクトルである.結晶がランダムに配向している場合は、

$$Fl_{\mathrm{e},\mathrm{s}} = \frac{\rho_{\mathrm{e}}k_{\mathrm{B}}T}{\rho_{\mathrm{m}}v_{\mathrm{l}}^{2}}, \quad v_{\mathrm{l}}^{2} \equiv \langle v_{\mathrm{l}}^{2}(\mathbf{e})\rangle$$
(A4.25)

となる. v₁は縦格子波の平均の位相速度であり、等方性固体に対しては

$$\rho_{\rm m} v_1^2 = \left(1 + \frac{4}{3} \kappa_{\rm s} G\right) / \kappa_T \tag{A4.26}$$

で与えられ、固体のずり弾性率G、等温圧縮率 κ_{τ} 、断熱圧縮率 κ_{s} に依存する. Rathie 6^{3} はさらに、小角領域で次式が成立することを示唆した.

$$Fl_{e,s} = \frac{\rho_e k_B T}{\rho_m v_l^2} + cq^2 + \cdots$$

$$\approx \frac{\rho_e k_B T}{\rho_m v_l^2} \exp(c'q^2)$$
(A4.27)

ここで, c, c' はqに依存しない定数である.

図A4.4には種々の純粋物質、ポリスチレン(PS)、ポリメチルメタクリレート (PMMA)、ベンゼン、ポリエチレン(PE)、水における小角散乱強度log $I_s(\theta)$ の θ^2 (孤 度の二乗)に対するプロットを示す. PS, PMMA, PEに対しては(A4.27)式の関数形が 良く適合し、フォノンのTDSに対する寄与(すなわち圧力のゆらぎの寄与)が大きい ことがわかる. ベンゼン、水に対してはlog $I \ge \theta^2 \ge$ の直線関係の存在は理論的に完

図A4.5 ベンゼンの電子数のゆらぎ Fl_e の温度依存性(Rathie S^{3}). Fl_e は固体では $Fl_{e,s}$ 、液体では Fl_{e_1} に等しい.

全には明らかでないが(なぜならばエントロピーのゆらぎの寄与が存在するので),良く直線に乗っていることが示されている. 図A4.5 はベンゼンの Fl_e の温度依存性を示す. 250~300 Kに見られる Fl_e に関する「階段的」変化は,ベンゼンの結晶化,融解と関係し,過冷却現象が観測されている.溶融状態では Fl_e (すなわち $Fl_{e,l}$) vs Tプロットは液体に対する理論(A4.14), (A4.15)式に従う. T < 250 Kの低温領域では Fl_e (すなわち Fl_e (すなわち Fl_e) は Tに比例し、散乱はフォノンにより記述できる[(A4.25)式)]. Fl_e vs Tプロットの勾配から、フォノンの位相速度として 2.8×10³ m s⁻¹が得られている. T=0 Kで,残存する Fl_e は格子欠陥によるものであると考えられる. したがって、十分低温では,

$$Fl_{e,s}(T) = Fl_{e,s}(T=0) + \frac{\rho_e k_B T}{\rho_m v_1^2}$$
(A4.28)

となる. また $T \ge 250$ Kから融点近傍までの Fl_{es} のTに関する急激な上昇は,格子振動の非調和性によるものであると考えられる.

図A4.6にはPSの電子数のゆらぎ Fl_e の温度依存性を示す.無定形物質においては、 図A4.5のベンゼンに対して観測されたような Fl_e の急激な温度変化は存在せず、全温 度領域で図の曲線a(-・-)で示されたような緩やかな変化が観測される.低温にお いては直線bで示されたように、 Fl_e はTとともに直線的に増加する[(A4.28)式].そ の傾きから縦フォノンの速度として2.3×10³ m s⁻¹が得られている.0Kでの Fl_e は0.52 であり、ベンゼンのそれ(0.11、図A4.5参照)に比して非常に大きく、凍結された乱れ が非常に大きいことがわかる.ブリルアン散乱から測定されたフォノンの速度は 2.87×10³ m s⁻¹であり、X線測定値よりやや大きい値が報告されている.ガラス転移 温度 T_g 以上では Fl_e の温度勾配は大きくなり、 Fl_e はWendorffとFischer⁸⁾の報告にあ るように熱ゆらぎによる(A4.21)、(A4.22)式に従う. $T_s < T < T_g$ ではWendorffと Fischerの報告にあるように Fl_{n_1} は

図A4.6 ポリスチレンの電子数のゆらぎ Fl_e の温度依存性(Rathieら³⁾).

図A4.7 結晶(a)および非結晶体(b)の電子数のゆらぎ(実線)の温度依存性(Rathieら³⁾).

$$Fl_{\rm pl} = \rho_{\rm p} k_{\rm B} T \kappa_T (T_{\rm g}) \tag{A4.29}$$

に従う.ここで、 $\kappa_T(T_g)$ は T_g で凍結された等温圧縮率であり、 $Fl_{p,b}$, Fl_e は $T \rightarrow 0$ のと き $Fl_{p,b}$, $Fl_e \rightarrow 0$ となる(直線c).WendorffとFischer⁸⁾, Jamieson, Simha ら⁹⁾は(A4.29)式 を非平衡統計力学に基づいて説明した. T_s の物理的意味はいまだに十分な説明がなさ れていないが、何らかの緩和機構と関連していよう.仮に $T < T_g$ での Fl_{es} の温度依存 性を(A4.25),(A4.26)式と実験的に観測される κ_T , κ_s , Gの温度依存性を用いて計算す ると、曲線dのようになり、フォノンによる Fl_{es} は $T = T_g$ の近傍でTの増加とともに 急激に増加する.しかしながら観測された密度のゆらぎは曲線aが示すように $T = T_g$ の近傍で曲線dのように階段的には変化せず、Tに関して勾配を変えるのみである. このことは、密度のゆらぎの他の一因であるエントロピーのゆらぎの寄与がTを T_g 以下に低下させても急激には減少せず、むしろ(フォノンの寄与に比して)相対的に増 加することを意味する.

図A4.7は、結晶(a)と無定形固体(b)における電子数のゆらぎ*Fl*_eに対するフォノンの寄与(斜線部)と、エントロピーの寄与(残存部)とを模式的に示したものである。結

晶固体については, $T < T_m$ (融点)ではゆらぎはほとんどフォノンによる. $T > T_m$ では, フォノン以外に,密度ゆらぎに関するエントロピーの寄与も重要となる. 他方, 無定 形固体ではエントロピーの密度ゆらぎへの寄与は,フォノンの密度ゆらぎへの寄与に 比して,相対的に $T < T_g$ で大きく, $T > T_g$ では小さい.フォノンによる電子数のゆら ぎに対する寄与を考える限りでは,ガラス転移は融解過程と等価である.

□□ 付録4ノート

ノートA4.1 ■ (A4.6) 式の別の方法による導出

(A4.1)式の積分を*Int*とすると,

$$Int \equiv \int_0^\infty [p_{\rm id}(r) * h(r)] \frac{\sin qr}{qr} 4\pi r^2 d\mathbf{r}$$
(NA4.1.1)

このIntは次式と等価である.

$$Int = \int [p_{id}(\mathbf{r}) * h(\mathbf{r})] \exp(-i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r}$$

上式に(10.196)式で与えられるFourier変換の定理を使うと,

$$Int = \int p_{id}(\mathbf{r}) \exp(-i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r} \int h(\mathbf{r}) \exp(-i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r}$$
(NA4.1.2)

 $p_{id}(\mathbf{r}), h(\mathbf{r})$ は球対称関数であるから,

$$Int = \int p_{\rm id}(r) \frac{\sin qr}{qr} 4\pi r^2 dr \int_0^\infty h(r) \frac{\sin qr}{qr} 4\pi r^2 dr \qquad (\rm NA4.1.3)$$

よって,球対称系のFourier変換である(NA4.1.1)式に対しても,(10.196)式のFourier変換の定理が使用できることが,当然のことではあるがわかる.滑らかな界面をもった球状粒子に対しては,(9.3),(9.4)式より

$$\int_{0}^{\infty} p_{\rm id}(r) \frac{\sin qr}{qr} 4\pi r^2 dr = V_{\rm s} \Delta p \Phi(U_{\rm s})$$
 (NA4.1.4)

である. h(r)のFourier変換に対しては、h(r)について以下のモデルに対して実施しよう. 球の界面で、散乱能が図10.27に示されるような滑らかな散乱能密度分布を有するモデルに 対しては、h(r)は(10.209)式の第1式で与えられ、 $p_{\text{psd,s}}(r)$ は(10.215)式で与えられる.また、

$$\int_{0}^{\infty} h(r) \frac{\sin qr}{qr} 4\pi r^{2} dr = H(q)$$
(10.202)

である. (NA4.1.3), (NA4.1.4), (10.202)式より

$$Int = V_{s} \Delta p \Phi(U_{s}) H(q)$$
 (NA4.1.5)

となる. よって, qの大きい領域での散乱強度 I_{pds,s}(q)は, (A4.1), (NA4.1.5)式より

$$\frac{I_{\rm pds,s}(q)}{K_{\rm s}\Delta \phi^2 V_{\rm s}^{-2}} = \Phi^2(U_{\rm s})H^2(q) = \frac{9}{2U_{\rm s}^{-4}}(1-\sigma^2 q^2) \tag{NA4.1.6}$$

と表される.上式において, $\Phi^2(U)$, $H^2(q)$ にはそれぞれ (9.14), (10.211)式を用いた. (A4.7) 式と (NA4.1.6)式より (A4.6)式が得られる.

付録4文献

[引用文献]

- A. Todo, H. Uno, K. Miyoshi, T. Hashimoto, and H. Kawai, *Polym. Eng. Sci.*, **17**, 587–597 (1977)
- 2) C. G. Vonk, J. Appl. Cryst., 6, 81-86 (1973)
- 3) J. Rathie and W. Ruland, Colloid Polym. Sci., 254, 358–370 (1976)
- H. Hashimoto, M. Fujimura, T. Hashimoto, and H. Kawai, *Macromolecules*, 14, 844–851 (1981)
- 5) B. Chu, Laser Light Scattering, Academic Press, New York (1974)
- 6) W. Cochran, *The Dynamics of Atoms in Crystals*, Edward Arnold Publishers, London (1973)
- 7) A. Guinier, X-ray Diffraction, W. H. Freeman, San Francisco (1963)
- 8) J. H. Wendorff and E. W. Fischer, Kolloid-Z. u. Z. Polym., 251, 876-883 (1973)
- 9) C. M. Balik, A. M. Jamieson, and R. Simha, Colloid Polym. Sci., 260, 477-486 (1982)
付録5 粒子間干渉効果(その2:固体)

第11章では、液体のように短距離秩序を有する粒子、分子、原子からの散乱波の 粒子間干渉効果について述べた.ここでは固体中における粒子、分子、原子からの散 乱波の粒子間干渉効果について検討する.固体中では、粒子は凍結された液体構造の みならず、この液体より高いレベルの秩序構造をも形成する.この秩序構造は、長距 離秩序で特性づけられる.この長距離秩序のレベルにより完全結晶から乱れた結晶(パ ラクリスタル、paracrystal)に至るさまざまな構造が考えられる.ここでは、完全結 晶における結晶の単位胞間または単位格子(unit cell)間の干渉効果について記述する. これにより第12章のパラクリスタル格子・超格子による散乱理論を展開するための 準備をすることもできる.

付録5.1 ■ Laueの格子因子 | z_c(q) |²

結晶格子を記述する関数である結晶格子関数 $z_c(\mathbf{x})$ は,格子ベクトル(lattice vector) を \mathbf{x}_{uwv} とすると

$$\boldsymbol{z}_{c}(\mathbf{x}) = \sum_{\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}} \delta(\mathbf{x} - \mathbf{x}_{\boldsymbol{u}\boldsymbol{v}\boldsymbol{w}})$$
(A5.1)

$$\mathbf{x}_{uvw} = u\mathbf{a}_1 + v\mathbf{a}_2 + w\mathbf{a}_3 \tag{A5.2}$$

で表すことができる. u, v, wはゼロまたは正, 負の整数である. $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ は, 結晶の 単位胞を示す3つの基本ベクトル (fundamental vectors)である. $\delta(x)$ はDiracのデルタ 関数である. (u, v, w)は $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ 方向への結晶格子の位置を規定する. いま, $z_c(x)$ のFourier変換で定義される格子振幅(lattice amplitude)を $z_c(\mathbf{q})$ とすると,

$$z_{c}(\mathbf{q}) = \sum_{u,v,w} \int \delta(\mathbf{x} - \mathbf{x}_{uvw}) \exp(i\mathbf{q} \cdot \mathbf{x}) d\mathbf{x}$$

$$= \sum_{u,v,w} \exp(i\mathbf{q} \cdot \mathbf{x}_{uvw})$$
(A5.3)

結晶がa1, a2, a3方向にそれぞれM個の単位胞から構成される平行六面体とすると

$$\boldsymbol{z}_{c}(\mathbf{q}) = \prod_{k=1}^{3} K_{k}(\mathbf{q})$$
(A5.4)

$$K_{k}(\mathbf{q}) = \sum_{p_{k}=-M/2}^{M/2} \{ \exp(i\mathbf{q} \cdot \mathbf{a}_{k}) \}^{p_{k}} \quad (k = 1, 2, 3)$$
(A5.5)

439

○付録5の記号

$$z_c(\mathbf{x})$$
:結晶の格子関数, (A5.1)式
 \mathbf{x}_{uvw} :結晶の格子ベクトル, (A5.2)式
 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$:結晶の単位胞の基本ベクトル
 $|z_c(\mathbf{q})|^2$:結晶の格子因子(Laueの格子因子), (A5.7)式
 (N, L, M) : $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 方向の結晶格子の数
 $|z_{cinf}(\mathbf{q})|^2$:無限に大きい結晶の格子因子
 V_c :結晶の単位胞の体積
 \mathbf{r}_{kd} :結晶の(hkl)面の逆格子ベクトル
 $(\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*)$:結晶の基本ベクトル $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ に対応する基本逆格子ベクトル, (A5.12)
式
 $\sigma_c(\mathbf{x})$:結晶の形状関数, (A5.18)式
 $\sigma_c(\mathbf{q})$:結晶の形状振幅
 $z_{cfin}(\mathbf{x})$:有限な大きさをもった結晶の格子関数
 $z_{cfin}(\mathbf{x})$:有限な大きさをもった結晶の格子振幅
 $I_c: 1$ 個の電子の散乱強度(Thomson散乱強度)
 $\rho_{cell}(\mathbf{x})$:結晶の単位胞内の電子密度分布
 $|\rho_{cell}(\mathbf{q})|^2$:結晶の単位胞の構造因子
 d_{kdl} : (hkl) 面の面間隔
 V_i^* :基本逆格子ベクトル $(\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*)$ が構成する単位格子の体積

ここで、 $p_1 = u, p_2 = v, p_3 = w$ とする. 7.4節で示した演算(ノート7.1参照)を $K_k(\mathbf{q})$ に施 すと、次式が得られる.

$$K_{k}(\mathbf{q}) = \frac{\sin[(M+1)(\mathbf{q} \cdot \mathbf{a}_{k})/2]}{\sin(\mathbf{q} \cdot \mathbf{a}_{k}/2)}$$
(A5.6)

したがって、一辺が Ma_1, Ma_2, Ma_3 の平行六面体からなる結晶格子の構造振幅は(A5.4)、 (A5.6)式で与えられる.また回折強度と関係する格子因子(lattice factor) $|z_c(\mathbf{q})|^2$ は

$$|\boldsymbol{z}_{c}(\mathbf{q})|^{2} = \prod_{k=1}^{3} K_{k}^{2}(\mathbf{q})$$
 (A5.7)

で与えられる. $|\mathbf{z}_{c}(\mathbf{q})|^{2}$ はLaue (ラウエ)の格子因子と呼ばれている.

付録5.2 ■ Laueの格子因子 | *z*_c(q) |²の特性

 $(\mathbf{q} \cdot \mathbf{a}_k)/2 = \pi x \ \varepsilon \ \tau \ \delta \ \varepsilon$

$$K_{k}^{2}(\mathbf{q}) = \frac{\sin^{2}[\pi(M+1)x]}{\sin^{2}\pi x} \equiv f(x)$$
(A5.8)

7.4節で示したように、f(x)は、xが整数(ゼロを含む)のときに極大となり、極大値は $(M+1)^2$ である.またf(x)は $(M+1)x = \pm m$ (mは整数)のときゼロとなるので、x = (整数)を中心とした<math>f(x)の極大の幅は(M+1)に逆比例する(第7章図7.7参照).

以上よりLaueの格子因子 $|z_c(\mathbf{q})|^2$ は、以下の性質を有することがわかる. (1) 散乱ベクトル \mathbf{q} が次式を満足するときに $|z_c(\mathbf{q})|^2$ は極大を有する.

$$\mathbf{q} \cdot \mathbf{a}_1 = 2\pi h, \quad \mathbf{q} \cdot \mathbf{a}_2 = 2\pi k, \quad \mathbf{q} \cdot \mathbf{a}_3 = 2\pi l$$
 (A5.9)

ここで, h,k,lは整数である.

(2) |z_c(**q**)|²の極大値は,結晶の大きさに依存する.

結晶が \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 方向にそれぞれ Na_1 , La_2 , Ma_3 の大きさをもつときには、極大値は $(N+1)^2(L+1)^2(M+1)^2$ となる.

(3) $|\mathbf{z}_{c}(\mathbf{q})|^{2}$ の極大の幅は(N+1)(L+1)(M+1)に逆比例する.

無限に大きい結晶に対しては,格子因子の極大値は無限大,極大の幅はゼロとなる. この場合,格子因子はデルタ関数で表すことができ, \mathbf{q} が(A5.9)式を満足するときの み回折が起こる.この場合の格子因子を $|\mathbf{z}_{c,inf}(\mathbf{q})|^2$ とすると,これは(A5.7),(A5.9)式 より次式で与えられる.

$$|\boldsymbol{z}_{c,inf}(\mathbf{q})|^{2} = \frac{1}{V_{c}} \prod_{k=1}^{3} K_{inf,k}(\mathbf{q}) \qquad (A5.10)^{(\prime - 1 \cdot A5.1)}$$
$$K_{inf,k}(\mathbf{q}) = \sum_{k=1}^{\infty} \delta(\mathbf{q} \cdot \boldsymbol{a}_{k} - 2\pi h_{k}) \qquad (A5.11)$$

ここで、 V_c は単位胞の体積、 $h_k(k=1, 2, 3)$ は $h_1 \equiv h, h_2 \equiv k, h_3 \equiv l$ と定義する. (A5.10) 式において係数($1/V_c$)が必要であることに注意が必要である^(V-hA5.1). 結晶の(*hkl*)面 に対する逆格子ベクトル(reciprocal lattice vector) \mathbf{r}_{hkl}^* および単位格子を記述する基本 ベクトル $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ に対応する逆格子ベクトルをそれぞれ $\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*$ で定義すると

$$\mathbf{r}_{hkl}^* = h\mathbf{a}_1^* + k\mathbf{a}_2^* + l\mathbf{a}_3^* \tag{A5.12}$$

ただし、2つの基本ベクトルの組 $(\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*)$ と $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ の間には次式の関係が存在するものとする.

$$\mathbf{a}_{k}^{*} \cdot \mathbf{a}_{l} = \delta_{kl} \quad (k, l = 1, 2, 3)$$
 (A5.13)

ここで、 δ_{kl} はクロネッカー(Kronecker)のデルタで、k=lのときに1、 $k \neq l$ のときゼロとする.この場合、散乱ベクトル**q**が逆格子ベクトル**r** $_{kkl}^*$ と一致するとき

$$\mathbf{q} = 2\pi \mathbf{r}_{hkl}^* \tag{A5.14}$$

のみ(A5.9)式または(A5.11)式を満足し回折が起こる. すなわち,

$$\mathbf{q} \cdot \mathbf{a}_{1} = 2\pi \mathbf{r}_{hkl}^{*} \cdot \mathbf{a}_{1} = 2\pi h$$

$$\mathbf{q} \cdot \mathbf{a}_{2} = 2\pi \mathbf{r}_{hkl}^{*} \cdot \mathbf{a}_{2} = 2\pi k$$

$$\mathbf{q} \cdot \mathbf{a}_{3} = 2\pi \mathbf{r}_{hkl}^{*} \cdot \mathbf{a}_{3} = 2\pi l$$

(A5.15)

回折条件(A5.14)式を満足する \mathbf{q} の絶対値を q_{hkl} , Bragg角 $\theta \in \theta_{hkl}$, (*hkl*)面の面間隔を d_{hkl} とすると、(A5.14)式より

$$q_{hkl} = \frac{4\pi}{\lambda} \sin \frac{\theta_{hkl}}{2} = 2\pi r_{hkl}^* = \frac{2\pi}{d_{hkl}}$$

となり $[r_{hkl}^* = 1/d_{hkl}$ は後述の (A5.44) 式参照], Bragg の回折条件

$$2d_{hkl}\sin\left(\frac{\theta_{hkl}}{2}\right) = \lambda \tag{A5.16}$$

が得られる.したがって、無限に大きい完全結晶の格子因子は次式で与えられる.

$$|\boldsymbol{z}_{\text{c,inf}}(\mathbf{q})|^2 = \frac{1}{V_{\text{c}}} \sum_{(h,k,l)} \delta(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^*)$$
(A5.17)

逆格子(reciprocal lattice)に関する諸性質は参考のため、後述の付録5.4にまとめた.

付録5.3 ■ 有限な大きさを有する結晶からの回折

この節でも結晶は完全で乱れをもたないものと仮定し,結晶の大きさの回折に及ぼ す効果を検討する.いま $\rho_{c,inf}(\mathbf{x})$ および $\rho_{cell}(\mathbf{x})$ をそれぞれ無限に大きい結晶内の電子 密度分布および結晶格子点にある単位胞内の電子密度分布とする.電子密度分布の代 わりに散乱能密度の分布を用いればX線のみならず中性子,可視光の散乱回折も記述 できる(4.4節参照).結晶の大きさを決定する結晶の形状関数(shape function)を $\sigma_{c}(\mathbf{x})$ とすると

$$\sigma_{c}(\mathbf{x}) = \begin{cases} 1 & (\mathbf{x} \, \text{が結晶内に存在するとき}) \\ 0 & (そうではないとき) \end{cases}$$
(A5.18)

有限の大きさをもつ結晶内部の電子密度分布を $\rho_{cfin}(\mathbf{x})$ とすると、 $\rho_{cfin}(\mathbf{x})$ は

$$\rho_{\rm c,fin}(\mathbf{x}) = \rho_{\rm c,inf}(\mathbf{x})\sigma(\mathbf{x}) \tag{A5.19}$$

で示すことができる.

(A5.1)式で定義した結晶格子を記述する関数 $z_c(\mathbf{x})$ は、(u, v, w)を無限数か有限数に 設定することにより結晶が無限に大きいときにも有限な大きさをもつときにも、共通 に使用可能である.結晶が無限に大きいときの結晶格子関数を特別に $z_{c,inf}(\mathbf{x})$ とする と $\rho_{c,inf}(\mathbf{x})$ は

$$\rho_{\text{c,inf}}(\mathbf{x}) = \rho_{\text{cell}}(\mathbf{x}) \ast z_{\text{c,inf}}(\mathbf{x})$$

= $\int \rho_{\text{cell}}(\mathbf{u}) z_{\text{c,inf}}(\mathbf{x} - \mathbf{u}) d\mathbf{u}$ (A5.20)

で与えられる.他方,有限な結晶に対する p_{c.fn}(x)は,(A5.19),(A5.20) 式より

$$\rho_{c,fin}(\mathbf{x}) = [\rho_{cell}(\mathbf{x}) * \boldsymbol{z}_{c,inf}(\mathbf{x})] \boldsymbol{\sigma}_{c}(\mathbf{x})$$
$$= \rho_{cell}(\mathbf{x}) * [\boldsymbol{z}_{c,inf}(\mathbf{x}) \boldsymbol{\sigma}_{c}(\mathbf{x})]$$
$$= \rho_{cell}(\mathbf{x}) * \boldsymbol{z}_{c,fin}(\mathbf{x})$$
(A5.21)

上式第3式の両辺にFourier変換を施すと,

$$\rho_{\text{c,fin}}(\mathbf{q}) = \rho_{\text{cell}}(\mathbf{q}) z_{\text{c,fin}}(\mathbf{q})$$

$$= \rho_{\text{cell}}(\mathbf{q}) [z_{\text{c,inf}}(\mathbf{q}) * \sigma_{\text{c}}(\mathbf{q})]$$
(A5.22)

を得る.ここで、 $X(\mathbf{q})$ は対応する関数 $X(\mathbf{x})$ のFourier変換を意味し、次式で与えられる.

$$X(\mathbf{q}) = \int X(\mathbf{x}) \exp(i\mathbf{q} \cdot \mathbf{x}) d\mathbf{x}$$
 (A5.23)

 $z_{c,fin}(\mathbf{x})$ および $z_{c,fin}(\mathbf{q})$ はそれぞれ有限な大きさをもった結晶格子の構造関数および構造振幅である.

(A5.22)式より有限な大きさをもつ結晶からのX線回折強度を $I_{c,fin}(\mathbf{q})$ とすると、これは第4章、第6章を参考にすると(A5.22)式の第1式を用いて、

$$I_{c,fin}(\mathbf{q}) = I_{e} |\rho_{c,fin}(\mathbf{q})|^{2}$$

= $I_{e} |\rho_{cell}(\mathbf{q})|^{2} |\mathbf{z}_{c,inf}(\mathbf{q}) * \sigma_{c}(\mathbf{q})|^{2}$ (A5.24)

で与えられる.ここで、 I_e は1個の電子による散乱強度、すなわちThomson散乱強度 である.上式より $I_{c,fin}(\mathbf{q})$ は単位胞の散乱強度 $I_e|\rho_{cell}(\mathbf{q})|^2$ 、無限に大きい結晶格子の 格子振幅 $z_{c,inf}(\mathbf{q})$ および結晶の大きさに依存する形状振幅(shape amplitude) $\sigma_e(\mathbf{q})$ に依 存することがわかる. $|z_{c,inf}(\mathbf{q})|^2$ が(A5.17)式で与えられるので

$$z_{c,inf}(\mathbf{q}) * \sigma_{c}(\mathbf{q}) = \int z_{c,inf}(\mathbf{u}) \sigma_{c}(\mathbf{q} - \mathbf{u}) d\mathbf{u}$$

$$= \frac{1}{V_{c}^{1/2}} \sum_{(h,k,l)} \int \delta(\mathbf{u} - 2\pi \mathbf{r}_{hkl}^{*}) \sigma_{c}(\mathbf{q} - \mathbf{u}) d\mathbf{u}$$

$$= \frac{1}{V_{c}^{1/2}} \sum_{(h,k,l)} \sigma_{c}(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^{*})$$
 (A5.25)

(A5.24), (A5.25)式より

$$I_{\rm c,fin}(\mathbf{q}) = \frac{I_{\rm e}}{V_{\rm c}} \left| \rho_{\rm cell}(\mathbf{q}) \right|^2 \sum_{(h, \mathbf{k}, l)} \left| \sigma_{\rm c}(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^*) \right|^2$$
(A5.26)

上式より,有限の大きさを有する結晶からの回折強度 $I_{c,fin}(\mathbf{q})$ は,各々の逆格子点2 $\pi \mathbf{r}_{hkl}^{*}$ を中心とする結晶の形状因子の強度分布 $|\sigma_{c}(\mathbf{q}-2\pi \mathbf{r}_{hkl}^{*})|^{2}$ に依存することが判明する. Fourier 変換の性質より,結晶粒子のサイズが大きれば大きいほど $|\sigma_{c}(\mathbf{q}-2\pi \mathbf{r}_{hkl}^{*})|^{2}$ は $|\mathbf{q}-2\pi \mathbf{r}_{hkl}^{*}|$ の増加とともに鋭く減少する.結晶が無限に大きいときには, $|\sigma_{c}(\mathbf{q}-2\pi \mathbf{r}_{hkl}^{*})|^{2} \rightarrow \delta(\mathbf{q}-2\pi \mathbf{r}_{hkl}^{*})$ であり,結晶の格子因子は(A5.17)式の $|\mathbf{z}_{c,inf}(\mathbf{q})|^{2}$ に帰結する. したがって,無限に大きな結晶の回折強度 $I_{c,inf}(\mathbf{q})$ は

$$I_{\text{c,inf}}(\mathbf{q}) = \frac{I_{\text{e}}}{V_{\text{c}}} |\rho_{\text{cell}}(\mathbf{q})|^2 \sum_{(h,k,l)} \delta(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^*)$$
(A5.27)

で与えられる.

結晶からの回折条件 $\mathbf{q} = 2\pi \mathbf{r}_{hkl}^*$ を満足し、回折極大をもたらす \mathbf{q} の大きさを q_{hkl} とすると

$$q_{hkl} = 2\pi r_{hkl}^* \tag{A5.28}$$

となる. **図A5.1**は, 3つの回折極大を与える*q*, すなわち*q*₀₀₀(*q*=0), *q*_{hkl}, *q*_{h'kt} におけ る回折曲線の結晶サイズ依存性を模式的に示す.

- (1)与えられた回折極大位置*q_{hkl}*における回折曲線を見ると、結晶サイズが無限大のサイズから、小さくなるにつれて曲線a, b, cの順に回折極大値が減少し、回折曲線の幅が増大する。回折曲線aはデルタ関数で与えられる場合に対応する。
- (2) 結晶サイズの回折曲線に及ぼす効果は、すべての回折極大に対して等価である ことが(A5.26)式からわかる.
- (3) 回折幅の広がりは、結晶の大きさを反映した小角散乱強度分布、すなわち q_{000} を中心とした形状因子 $|\sigma_c(q)|^2$ に依存する.

図A5.2 は、結晶サイズの異方性(a)と逆格子点に発現する回折パターンの異方性(c) を模式的に示す。結晶の形状関数 $\sigma_c(\mathbf{r})$ が異方的であっても、各方向のサイズが非常 に大きいときには形状因子 $|\sigma_c(\mathbf{q}_{hkl})|^2$ に由来する回折パターンは逆格子点に縮退した パターン[図(c)の黒丸]となる。しかし、結晶サイズが小になると逆格子点 \mathbf{q}_{hkl} を中

図A5.1 3つの回折極大位置(q₀₀₀, q_{kkt}, q_{k'kt})における回折極大曲線の結晶サイズ依存性に関す る模式図.回折極大曲線aはデルタ関数を意味する(模式的に矢印で示す).

図A5.2 実空間に存在する形状関数 $\sigma_c(\mathbf{r})$ をもつ結晶(a)とその内部の結晶格子(格子ベクトルa,bの周 期構造(b). (c)逆格子ベクトルa*,b*の繰り返しからなる逆格子点と逆格子点に発現する格子 因子 $|\sigma_c(\mathbf{q}_{bkl})|^2$ を反映した回折像: $\sigma_c(\mathbf{r})$ が無限のときは逆格子点上に縮退した回折像(黒丸), $\sigma_c(\mathbf{r})$ が有限で(a)のように異方的であるとき,逆格子点を中心とした楕円状の回折像を与える. 形状関数 $\sigma_c(\mathbf{r})$ の主軸mと回折像の主軸dは互いに直交する.m,dはそれぞれの主軸の方向を 表す単位ベクトル.

心とした形状因子の異方的な広がりが生じ,回折パターンは異方的となる[図(c)の楕 円状の回折パターン参照]. $\sigma_{c}(\mathbf{r})$ の主軸の方向を示す単位ベクトル**m**と異方性をもっ た回折パターンの主軸の方向を示す単位ベクトル**d**は逆関係の原理(第7章)から互い に直交する.各逆格子点での回折パターンの異方性,広がり,配向は逆格子点の位置 に依存せず等価である[(A5.26)式参照].

(A5.26)式において,

$$|\boldsymbol{\sigma}_{c}(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^{*})|^{2} = \delta(\mathbf{q} - 2\pi \mathbf{r}_{hkl}^{*}) * |\boldsymbol{\sigma}_{c}(\mathbf{q})|^{2}$$
(A5.29)

であるから、上式を(A5.26)式に代入し、さらに(A5.17)式を用いると、有限なサイズの結晶の回折強度*I*cfm(**q**)は次式で与えられる.

$$I_{\rm c,fin}(\mathbf{q}) = I_{\rm e} |\rho_{\rm cell}(\mathbf{q})|^2 |\boldsymbol{z}_{\rm c,inf}(\mathbf{q})|^2 * |\boldsymbol{\sigma}_{\rm c}(\mathbf{q})|^2$$
(A5.30)

無限大のサイズの結晶に対しては、 $|\sigma_{c}(\mathbf{q})|^{2} \rightarrow \delta(\mathbf{q})$ であるから、

$$I_{\text{c,inf}}(\mathbf{q}) = I_{\text{e}} |\boldsymbol{\rho}_{\text{cell}}(\mathbf{q})|^2 |\boldsymbol{z}_{\text{c,inf}}(\mathbf{q})|^2$$
(A5.31)

を得る.上式は(A5.27)式と(A5.17)式からも得ることができる.(A5.30), (A5.31)式 より

$$I_{\rm c.fin}(\mathbf{q}) = I_{\rm c.inf}(\mathbf{q}) * |\sigma_{\rm c}(\mathbf{q})|^2$$
(A5.32)

(A5.30), (A5.32)式は有限な大きさを有する完全結晶に対して導出されたが、乱れた 結晶や粒子集合体にも拡張可能である。乱れた結晶の場合には、結晶の格子振幅 $z_{c,fn}(\mathbf{q})$ を乱れた結晶の距離統計振幅(distance statistics amplitude) $Z(\mathbf{q})$ で置き換えれ ばよい、粒子の集合体の場合には、 V_c を粒子1個が占める体積 v_p に、 $z_{c,inf}(\mathbf{q})$ を無限空 間に広がる粒子集合体の距離統計因子Z(q)で置き換えればよい. 第12章では, パラ クリスタル格子についてこのZ(q)を検討する.

付録5.4 ■逆格子のさまざまな特性

(1) **a**^{*}は**b**, **c**面に垂直, **b**^{*}は**c**, **a**面に垂直, **c**^{*}は**a**, **b**面に垂直

図A5.3において基本ベクトル**a**, **b**を含む2つの平行な面 Π_1 , Π_2 はベクトル**c**を周期 とする(001)面を形成し、その面間隔 d_{001} は \overline{OH} に等しい.**a**, **b**, **c**からなる単位格子の 体積を V_c とすると、

$$V_{\rm c} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = |\mathbf{a} \times \mathbf{b}| \,\mathrm{OH} \tag{A5.33}$$

で与えられる. 上式より

$$\overline{\text{OH}} = d_{001} = \frac{V_{\text{c}}}{|\mathbf{a} \times \mathbf{b}|} = \frac{1}{|\mathbf{c}^*|}$$
(A5.34)

を得る.上式の最終式は、(A5.13)式および**c**·c*=OH|c*|=1より得られる.同様に

$$d_{100} = \frac{V_{\rm c}}{|\mathbf{b} \times \mathbf{c}|} = \frac{1}{|\mathbf{a}^*|}, \quad d_{010} = \frac{V_{\rm c}}{|\mathbf{c} \times \mathbf{a}|} = \frac{1}{|\mathbf{b}^*|}$$
(A5.35)

(2) 単位格子の体積 V_cと逆格子を形成する基本ベクトルa^{*}, b^{*}, c^{*}が構成する単位格子の体積 V^{*}_cとの関係

(A5.33)式より, V_cとa, b, cとの関係

$$V_{\rm c} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$$
(A5.36)

を得ることができる. 同様に

$$V_{\rm c}^* = (\mathbf{a}^* \times \mathbf{b}^*) \cdot \mathbf{c}^* = (\mathbf{b}^* \times \mathbf{c}^*) \cdot \mathbf{a}^* = (\mathbf{c}^* \times \mathbf{a}^*) \cdot \mathbf{b}^*$$
(A5.37)

を得る. ベクトルの組(**a**, **b**, **c**)および(**a**^{*}, **b**^{*}, **c**^{*})を任意の直交座標(各軸方向の単位 ベクトルを**e**₁, **e**₂, **e**₃とする)で表すと,

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{a}^* \\ \mathbf{b}^* \\ \mathbf{c}^* \end{pmatrix} = \begin{pmatrix} a_1^* & a_2^* & a_3^* \\ b_1^* & b_2^* & b_3^* \\ c_1^* & c_2^* & c_3^* \end{pmatrix} \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}$$
(A5.38)

ここで, a_k, a_k^* などはベクトル \mathbf{a}, \mathbf{a}^* の直交座標軸の1つの軸 \mathbf{e}_k の成分を示す. (A5.36), (A5.38)式より

図A5.3 単位格子を形成する基本ベクトルa,b,cと逆格子を形成する基本ベクトルの1つc*.

$$V_{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = [\mathbf{a}\mathbf{b}\mathbf{c}] \quad (\mathcal{A} \not \mathcal{D} \not \neg - \Xi \mathbf{a} \overline{\mathbf{a}})$$

$$= a_{1}(b_{2}c_{3} - b_{3}c_{2}) + a_{2}(b_{3}c_{1} - b_{1}c_{3}) + a_{3}(b_{1}c_{2} - b_{2}c_{1})$$

$$= \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix}$$
(A5.39)

[abc]はGrassmann (グラースマン)の記号という. また(A5.37)式より

$$V_{\rm c}^* = \begin{vmatrix} a_1^* & a_2^* & a_3^* \\ b_1^* & b_2^* & b_3^* \\ c_1^* & c_2^* & c_3^* \end{vmatrix} = \begin{vmatrix} a_1^* & b_1^* & c_1^* \\ a_2^* & b_2^* & c_2^* \\ a_3^* & b_3^* & c_3^* \end{vmatrix}$$
(A5.40)

(A5.40)式の第2式は行列式の性質(行と列とを入れ替えても行列式は不変)を用いて 得られた. (A5.39)式および(A5.40)式の第2式より

$$V_{c}V_{c}^{*} = \begin{vmatrix} \mathbf{a} \cdot \mathbf{a}^{*} & \mathbf{a} \cdot \mathbf{b}^{*} & \mathbf{a} \cdot \mathbf{c}^{*} \\ \mathbf{b} \cdot \mathbf{a}^{*} & \mathbf{b} \cdot \mathbf{b}^{*} & \mathbf{b} \cdot \mathbf{c}^{*} \\ \mathbf{c} \cdot \mathbf{a}^{*} & \mathbf{c} \cdot \mathbf{b}^{*} & \mathbf{c} \cdot \mathbf{c}^{*} \end{vmatrix} = \begin{vmatrix} \mathbf{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{1}$$

よって

$$V_{\rm c}V_{\rm c}^* = 1$$
 (A5.41)

(3) (a*, b*, c*)は(a, b, c)と次式の関係を有する.
 (A5.34), (A5.35)式より

$$\mathbf{a}^* = \frac{\mathbf{b} \times \mathbf{c}}{V_{\mathbf{c}}}, \quad \mathbf{b}^* = \frac{\mathbf{c} \times \mathbf{a}}{V_{\mathbf{c}}}, \quad \mathbf{c}^* = \frac{\mathbf{a} \times \mathbf{b}}{V_{\mathbf{c}}}$$
 (A5.42)

 (4) 逆格子ベクトル r^{*}_{hkl} は Miller 指数(hkl) で特徴づけられる面に垂直で、その大きさ は(hkl) 面の面間隔 d_{ikl}の逆数に等しい.

図A5.4に示す結晶の格子面HKLを規定するMiller指数(hkl)は次式で定義される.

図A5.4 結晶格子面(*hkl*)と逆格子ベクトル \mathbf{r}_{hkl}^* との関係. $\overline{OH} = a/h, \overline{OK} = b/k, \overline{OL} = c/l.$

$$\overrightarrow{OH} = \mathbf{a}/h, \quad \overrightarrow{OK} = \mathbf{b}/k, \quad \overrightarrow{OL} = \mathbf{c}/l$$

$$\mathbf{r}_{hkl}^* \cdot \overrightarrow{HK} = (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \cdot (\overrightarrow{OK} - \overrightarrow{OH})$$

$$= (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \cdot (\mathbf{b}/k - \mathbf{a}/h) = 0$$
(A5.43)

同様に
$$\mathbf{r}_{hkl}^* \overrightarrow{\mathrm{HL}} = 0$$
, したがって \mathbf{r}_{hkl}^* はHKL面, すなわち(*hkl*)面に垂直である. また
 $\mathbf{r}_{hkl}^* \cdot \overrightarrow{\mathrm{OH}} = (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \cdot \mathbf{a}/h = 1$
 $= |\mathbf{r}_{hkl}^*| \overrightarrow{\mathrm{OH}} \cos \alpha = |\mathbf{r}_{hkl}^*| d_{hkl}$

よって

$$|\mathbf{r}_{hkl}^*| = \frac{1}{d_{hkl}} \tag{A5.44}$$

🛄 付録5ノート

ノートA5.1 ■ 無限に大きい完全結晶の格子因子は(A5.10), (A5.11), (A5.17)式 で与えられることの誘導

$$|\boldsymbol{z}_{\mathrm{c,inf}}(\mathbf{q})|^2 = C \prod_{k=1}^{3} \sum_{h_k=-\infty}^{\infty} \delta(\mathbf{q} \cdot \mathbf{a}_k - 2\pi h_k)$$

として、さらに(A5.14)、(A5.15)式を利用すれば

$$=C\sum_{(k,k,l)}\delta(\mathbf{q}-2\pi\mathbf{r}_{kkl}^{*})$$
(NA5.1.1)

上式の比例定数CがC=1/V。で与えられることを以下に導出しよう.

Laueの格子因子 $|z_c(\mathbf{q})|^2$ は、(A5.6)、(A5.7)式より

$$|\boldsymbol{z}_{c}(\mathbf{s})|^{2} = \prod_{k=1}^{3} \frac{\sin^{2}[(M+1)\pi(\mathbf{s}\cdot\boldsymbol{a}_{k})]}{\sin^{2}[\pi(\mathbf{s}\cdot\boldsymbol{a}_{k})]}$$
(NA5.1.2)

図NA5.1.1 逆空間の格子を記述する基本ベクトル(**a**^{*}₁, **a**^{*}₂, **a**^{*}₃), 散乱ベクトル**s**=**q**/2π=s₁**a**^{*}₁+ s₂**a**^{*}₂+s₃**a**^{*}₃と逆空間での微小体積素片*ds. ds*は各辺が**a**^{*}₁*ds*₁, **a**^{*}₂*ds*₃の平行六 面体である.

ここで、散乱ベクトルqを回折現象でよく使用されるs≡q/2πに置き換えた.このsは逆 格子を形成する基本ベクトルa^{*}₁, a^{*}₂, a^{*}₃に基づいて次式のように表すことができる.

$$\mathbf{s} = s_1 \mathbf{a}_1^* + s_2 \mathbf{a}_2^* + s_3 \mathbf{a}_3^* = \sum_{j=1}^3 s_j \mathbf{a}_j^*$$
(NA5.1.3)

ここで、 s_j はsの a_j^* 成分である. (NA5.1.2)式の($s \cdot a_k$)において(NA5.1.3), (A5.13)式の関係 を用いると

$$\mathbf{s} \cdot \mathbf{a}_{k} = \sum_{j=1}^{3} s_{j} \mathbf{a}_{j}^{*} \cdot \mathbf{a}_{k} = \sum_{j=1}^{3} s_{j} \delta_{jk} = s_{k}$$
(NA5.1.4)

(NA5.1.2), (NA5.1.4)式より

$$|z_{c}(\mathbf{s})|^{2} = \prod_{k=1}^{3} \frac{\sin^{2}[(M+1)\pi s_{k}]}{\sin^{2}\pi s_{k}}$$
(NA5.1.5)

次に格子因子 $|z_c(\mathbf{s})|^2$ のFourier空間(s-space, 逆空間)における体積積分を考えてみよう. 逆空間における微小体積素片の体積 $d\mathbf{s}$ は、(NA5.1.3)式に基づき、それぞれの辺が微小の 長さ $\mathbf{a}_1^* d\mathbf{s}_1, \mathbf{a}_2^* d\mathbf{s}_2, \mathbf{a}_3^* d\mathbf{s}_3$ をもった平行六面体で記述できるので(図NA5.1.1参照)、 $d\mathbf{s}$ は (A5.37)、(A5.41)式を用いると次式で表される.

$$d\mathbf{s} = V_{c}^{*} ds_{1} ds_{2} ds_{3} = \frac{1}{V_{c}} ds_{1} ds_{2} ds_{3}$$
(NA5.1.6)

ここで、 V_c は単位格子の体積、 $V_c^* = 1/V_c$ は逆空間で、基本格子ベクトル $\mathbf{a}_1^*, \mathbf{a}_2^*, \mathbf{a}_3^*$ が決定 する「単位逆格子」の体積である(付録5.4参照). (NA5.1.5), (NA5.1.6)式より

$$\int |z_{c}(\mathbf{s})|^{2} d\mathbf{s} = \int |z_{c}(\mathbf{s})|^{2} V_{c}^{*} ds_{1} ds_{2} ds_{3}$$

$$= V_{c}^{*} \prod_{k=1}^{3} \int \frac{\sin^{2}[(M+1)\pi s_{k}]}{\sin^{2}\pi s_{k}} ds_{k}$$
 (NA5.1.7)

 $\mathbf{s} = \mathbf{q}/(2\pi) \cong \mathbf{r}_{hkl}^* = (h\mathbf{a}_1^* + k\mathbf{a}_2^* + l\mathbf{a}_3^*)$ より、1個の逆格子点(*hkl*)近傍での*ds*₁, *ds*₂, *ds*₃に関する 積分は、それぞれ*s*₁ = (*h*- ε)~(*h*+ ε), *s*₂ = (*k*- ε)~(*k*+ ε), *s*₃ = (*l*- ε)~(*l*+ ε)の範囲で実行 すればよい、例えば

$$(ds_1 についての積分) = \int_{h-\varepsilon}^{h+\varepsilon} \frac{\sin^2[(M+1)\pi s_1]}{\sin^2 \pi s_1} ds_1$$
 (NA5.1.8)

上式において $s_1 - h = t$ とし、 s_1 からtに変数変換すれば

$$(\text{L} \ensuremath{\overline{1}}\ensuremath{\overline{1$$

ここで

$$\lim_{(M+1) \to \infty} \frac{\sin^2 [(M+1)\pi t]}{\sin^2 \pi t} = \delta(t)$$
 (NA5.1.10)

であるから, M→∞のとき

(上記積分) →
$$\int_{-\varepsilon}^{\varepsilon} \delta(t) dt = 1$$
 (NA5.1.11)

ここで上記の積分は1個の逆格子点(h, k, l)近傍での積分である.

(NA5.1.7), (NA5.1.10), (NA5.1.11)式より, 無限に大きい結晶に対する格子因子 | *z*_{c,inf}(**s**) |² に対して, 格子因子の全s空間(全逆空間)での積分は, 上記積分に総格子点数を乗じたも のとなる. ゆえに,

$$\int |z_{c,inf}(\mathbf{s})|^2 d\mathbf{s} = V_c^* (\text{ \empli k A \emp - i \exp 3})$$
(NA5.1.12)

を得る.

一方(NA5.1.1)式より, 無限大の結晶の格子因子

$$|\boldsymbol{z}_{\text{c,inf}}(\mathbf{s})|^{2} = C \prod_{k=1}^{3} \sum_{h_{k}=-\infty}^{\infty} \delta(\mathbf{s} \cdot \mathbf{a}_{k} - h_{k})$$

$$= C \sum_{(h, k, l)} \delta(\mathbf{s} - \mathbf{r}_{kkl}^{*})$$
(NA5.1.13)

を全逆空間でsについて積分すると

$$\begin{aligned} \int |\boldsymbol{z}_{c,inf}(\mathbf{s})|^2 \, d\mathbf{s} &= C \sum_{(h,h,l)} \int \delta(\mathbf{s} - \mathbf{r}_{hhl}^*) d\mathbf{s} \\ &= C \sum_{(h,h,l)} \int \delta(\mathbf{s}') d\mathbf{s}' \\ &= C \left(\hat{\boldsymbol{k}} \hat{\boldsymbol{k}} \hat{\boldsymbol{k}} + \boldsymbol{k} \hat{\boldsymbol{j}} \right) \end{aligned}$$
(NA5.1.14)

ここでは変数変換 $\mathbf{s'}=\mathbf{s}-\mathbf{r}_{hil}^*$ および $\int \delta(\mathbf{s'}) d\mathbf{s'}=1$ を用いた. (NA5.1.12)式, (NA5.1.14)式の 第3式より $C=V_c^*$ を得る. さらに(A5.41)式の関係を用いると

$$C = V_{\rm c}^* = \frac{1}{V_{\rm c}}$$
 (NA5.1.15)

を得る. したがって, (A5.10), (A5.17)式を導出できた.

付録5文献

[参考文献]

· A. Guinier, X-ray Diffraction, W. H. Freeman, San Francisco (1963)

付録6 パラクリスタルの回折像の形状

簡単化のため、2次元パラクリスタル格子の回折像の形状について検討しよう.2 次元パラクリスタルの格子因子は(12.50)、(12.51)式より

$$Z(\mathbf{q}) = \frac{1}{v}\delta(\mathbf{q}) + K_1(\mathbf{q})K_2(\mathbf{q})$$
(A6.1)

ここで $K_i(\mathbf{q})$ は

$$K_i(\mathbf{q}) = \Re\left\{\frac{1+F_i(\mathbf{q})}{1-F_i(\mathbf{q})}\right\} \quad (i=1,2)$$
(A6.2)

 $F_i(\mathbf{q})$ は(12.52)式より

$$F_1(\mathbf{q}) = H_{10}(\mathbf{q}), \quad F_2(\mathbf{q}) = H_{01}(\mathbf{q})$$
 (A6.3)

(12.65)式より

$$F_i(\mathbf{q}) = |F_i(\mathbf{q})| \exp(\mathrm{i}\mathbf{q} \cdot \overline{\mathbf{a}}_i) \quad (i = 1, 2)$$
(A6.4)

(12.71)式より、2次元パラクリスタルに対しては

$$H_{10}(\mathbf{x}) = \frac{1}{2\pi (\Delta a_{11}^2 \Delta a_{12}^2)^{1/2}} \exp\left[-\frac{1}{2} \left\{ \frac{(x_1 - \bar{a}_1)^2}{\Delta a_{11}^2} + \frac{x_2^2}{\Delta a_{12}^2} \right\} \right]$$

$$H_{01}(\mathbf{x}) = \frac{1}{2\pi (\Delta a_{21}^2 \Delta a_{22}^2)^{1/2}} \exp\left[-\frac{1}{2} \left\{ \frac{x_1^2}{\Delta a_{21}^2} + \frac{(x_2 - \bar{a}_2)^2}{\Delta a_{22}^2} \right\} \right]$$
(A6.5)

また、(12.74)、(12.76)式より

$$|F_{i}(\mathbf{q})| = \exp\left[-\left(\sum_{j=1}^{2} \Delta a_{ij}^{2} q_{j}^{2}\right) / 2\right]$$

$$= \exp\left[-2\pi^{2} \left(\sum_{j=1}^{2} g_{ij}^{2} h_{j}^{2}\right)\right] \qquad (A6.6)$$

ただし、(12.75)、(12.77)式より

$$2\pi h_i = \bar{a}_i q_i, \quad g_{ij}^2 = \Delta a_{ij}^2 / \bar{a}_j^2$$
 (A6.7)

さて(A6.1)~(A6.7)式に基づいて2次元パラクリスタル格子の回折像を具体的に検討しよう. x_1 方向の格子の存在確率 $H_{10}(\mathbf{r})$ を決定する格子歪みのパラメータの組 $(\Delta a_{11}^2, \Delta a_{12}^2)$ について、**表A6.1**で与えられるように、I~IVの4種類が存在するものとする.

同様に x_2 方向の格子の存在確率 $H_{01}(\mathbf{r})$ を決定する格子歪みパラメータの組(Δa_{21}^2 ,

Ι	$\Delta a_{11}^{2} = \Delta a_{12}^{2} = 0$	(A6.17a)
II	$\Delta a_{11}^{2} = 0, \ \Delta a_{12}^{2} = \Delta a^{2}$	(A6.17b)
III	$\Delta a_{11}^{2} = \Delta a^{2}, \ \Delta a_{12}^{2} = 0$	(A6.17c)
IV	$\Delta a_{11}^2 = \Delta a_{12}^2 = \Delta a^2$	(A6.17d)

表A6.1 H₁₀(r)の特性のまとめ.

表A6.2 H₀₁(r)の特性のまとめ.

T	$\lambda a^{2} - \lambda a^{2} - 0$	(16 182)
1	$\Delta u_{21} = \Delta u_{22} = 0$	(AC 101)
11	$\Delta a_{21} = \Delta a$, $\Delta a_{22} = 0$	(A6.18D)
III	$\Delta a_{21}^2 = 0, \ \Delta a_{22}^2 = \Delta a^2$	(A6.18c)
IV	$\Delta a_{21}^2 = \Delta a_{22}^2 = \Delta a^2$	(A6.18d)

 Δa_{22}^{2})についても,**表A6.2**で与えられるように,I~IVの4種類の組み合わせが存在 するものと仮定する.

結局4×4=16種類の2次元パラクリスタル格子が得られることになる.図A6.1に おいて、カラムA,Bは実空間における上記16種類の2次元パラクリスタル格子歪み テンソルを示す.カラムC,Dは逆空間における格子因子 $K_1(\mathbf{q}), K_2(\mathbf{q}),$ カラムEは格 子因子 $Z(\mathbf{q})$ を示す.図中カラムA,Bは16種類のパラクリスタル格子の格子歪みパラ メータの組の組み合わせ $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv L/M$ [ただしL,Mはそれぞれ H_{10} (表A6.1のI, II, III, IV)および H_{01} (表A6.2のI, II, III, IV)から選ばれたローマ数字を意味する]を示 す.1-Aと1-B(ともにI/I),5-Aと5-B(ともにII/II),8-Aと8-B(ともにIII/III), 10-Aと10-B(ともにIV/IV)は互いに重複するので、1-Bには実空間の座標を示し、 5-B,8-Bを空白とし、10-Bに逆空間の座標を示した.カラムCはカラムAに示した $H_{10}(\mathbf{x})$ の格子因子 $K_1(\mathbf{q})$ を、カラムDにはカラムAに示した $H_{01}(\mathbf{x})$ の格子因子 $Z(\mathbf{q}) = K_1(\mathbf{q})$ を示す.カラムEは、カラムAの格子乱れをもつパラクリスタル格子因子 $Z(\mathbf{q}) = K_1(\mathbf{q})$ $K_2(\mathbf{q})$ を示す.

カラムBに示した $H_{10}(\mathbf{r})$ と $H_{01}(\mathbf{r})$ とに対応する格子因子 $K_1(\mathbf{q}), K_2(\mathbf{q})$ および $Z(\mathbf{q}) = K_1(\mathbf{q})K_2(\mathbf{q})$ のそれぞれは、カラムC,DおよびEに示されていないことに注意が必要である。しかしながら、カラムBに示した格子はカラムAのそれを紙面に垂直な軸まわりに90°回転することにより得られる。したがって、カラムBに対応したカラムC[$K_1(\mathbf{q})$]、カラムD[$K_2(\mathbf{q})$]、およびカラムE[$Z(\mathbf{q}) = K_1(\mathbf{q})K_2(\mathbf{q})$]は、それぞれ図に示されているカラムC,D,Eの回折像を紙面に垂直な軸まわりに90°回転することにより得られる。

表A6.3には、カラムAの10種類の2次元格子の種類(A-1~A-10)、これらの H_{10}/H_{01} を特徴づける格子歪みの組み合わせ $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv L/M$ をまとめて示す、カ ラムBの10種類の格子(B-1)~(B-10)についても同様の対応関係が存在する、次に

	А	В	С	D	Е
1	2 I/I	$x_2 \rightarrow x_1$			• • •
2	2 I/II	• 2 II/I		A AA	
3	2 I/III	• 2 III/I			
4	0 ² I/IV	• ² IV/I		AND	
5	2 II/II		XXX	AAA	• - • • • • •
6	2 II/III	2 III/II	XXX		•••
7	0 ² Ⅱ/IV	2 IV/II •••••••_1	XXX	A A A	• • • 1 • 1 • • •
8	2 III/III				• ! •
9	0 ² Ⅲ/Ⅳ	2 IV/III			• • • • • • •
10	0 ² IV/IV ••••0·•••1	$ \stackrel{\uparrow q_2}{\longrightarrow} q_1 $	ÎXI	A A A	
	格子歪み	テンソル	$K_1(\mathbf{q})$	$K_2(\mathbf{q})$	$Z(\mathbf{q})$

図A6.1 2次元パラクリスタル格子の特性.カラムA, Bは表A6.1, 表A6.2のI~IVで特徴づけられる4種 類の2次元パラクリスタル格子歪みの組み合わせL/M(L, M=I, II, III, IV).カラムC, Dはそれ ぞれカラムA-1からA-10に対応する格子因子 $K_1(\mathbf{q}), K_2(\mathbf{q})$.カラムEは2次元格子因子 $Z(\mathbf{q}) = K_1(\mathbf{q})K_2(\mathbf{q})$ を示す.カラムEのシンボル•,(【またはー)および●は、それぞれ結晶回 折ピーク、結晶性の幅広回折、完全に幅広回折を意味する.

[R. Hosemann and S. N. Bagchi, *Direct Analysis of Diffraction by Matter*, North Holland, Amsterdam (1962)に基づいて作成]

カラム	格子歪みの組み合わせL/M	格子の乱れを示す式	
A-1	I/I	(A6.17a)/(A6.18a)	
A-2	I/II	(A6.17a)/(A6.18b)	
A-3	I/III	(A6.17a)/(A6.18c)	
A-4	I/IV	(A6.17a)/(A6.18d)	
A-5	II/II	(A6.17b)/(A6.18b)	
A-6	II/III	(A6.17b)/(A6.18c)	
A-7	II/IV	(A6.17b)/(A6.18d)	
A-8	III/III	(A6.17c)/(A6.18c)	
A-9	III/IV	(A6.17c)/(A6.18d)	
A-10	IV/IV	(A6.17d)/(A6.18d)	

表A6.3 カラムAの10種類の2次元パラクリスタル格子.

各格子の格子因子 $K_1, K_2, Z = K_1 K_2$ について検討しよう.

1) A-1の格子歪みテンソルをもつ格子: $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv (\mathbf{I}/\mathbf{I})$.

この場合 $\Delta a_{11}^2 = \Delta a_{12}^2 = 0$ であるから(A6.6)式より| $F_1(\mathbf{q})$ |=1, (A6.4)式より $F_1(\mathbf{q})$ = exp(-iq· $\mathbf{\bar{a}}_1$), よって(A6.2)式より

$$K_{1}(\mathbf{q}) = K_{1}(q_{1}, q_{2}) = \Re \left\{ \frac{1 + F_{1}}{1 - F_{1}} \right\} = \frac{1 - |F_{1}|^{2}}{1 - 2|F_{1}|\cos(\mathbf{q} \cdot \bar{\mathbf{a}}_{1}) + |F_{1}|^{2}}$$
(A6.8)

であるから、12.7節(12.106)式の議論より

$$(\mathbf{q} \cdot \overline{\mathbf{a}}_1) = 2\pi h_1 \quad (h_1 \colon \underline{\mathbf{x}} \underbrace{\mathbf{x}}) \tag{A6.9}$$

を満足する \mathbf{q} でのみ K_1 は極大となる. \mathbf{q} の x_1, x_2 成分を (q_1, q_2) とすると, (A6.9)式より

$$q_1 = 2\pi h_1 / \bar{a}_1 = 2\pi h_1 \bar{a}_1^* \tag{A6.10}$$

を満足する q_1 に対しては、すべての q_2 に対して K_1 は極大値をとる。そのため $K_1(\mathbf{q})$ は 図A6.1のC-1のような回折像を示す。同様に $K_2(\mathbf{q})$ は、同図のD-1のような回折像 を与える。2次元格子の格子因子 $Z(\mathbf{q})$ は $K_1(q)K_2(q)$ で与えられるので、E-1のような 2次元結晶の回折像を示す。

2) A-2の格子歪みテンソルをもつ格子: $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv (\mathbf{I}/\mathbf{II})$

この場合においても $\Delta a_{11}^2 = \Delta a_{12}^2 = 0$ であるので、1)の場合と同様に $K_1(\mathbf{q})$ は(A6.10) 式を満足する (q_1, q_2) に対して $K_1 \neq 0$ を満足し、その回折像はC-2で与えられる.また $\Delta a_{22}^2 = 0, \Delta a_{21}^2 = \Delta a^2$ であるので(A6.1)~(A6.6)式より

$$|F_{2}(\mathbf{q})| = \exp(-\Delta a_{21}^{2}q_{1}^{2}/2)$$

$$K_{2}(\mathbf{q}) = \frac{1 - |F_{2}|^{2}}{1 - 2|F_{2}|\cos(\mathbf{q} \cdot \overline{\mathbf{a}}_{2}) + |F_{2}|^{2}}$$
(A6.11)

12.7節(12.106)式の議論より $q_2 = 2\pi h_2 \bar{a}_2^* (h_2 : 整数)$, すなわち

$$(\mathbf{q} \cdot \bar{\mathbf{a}}_2) = 2\pi h_2 \quad (h_2 : \underline{\mathbf{x}} \underline{\mathbf{x}}) \tag{A6.12}$$

を満足する q_2 に対しては、すべての q_1 に対して K_2 は極大値をとる、この回折極大のq空間での積分幅は(12.119)式の議論より

$$\delta\beta(h_2) = \pi \overline{a}_2^* \{1 - \exp(-\Delta a_{21}^2 q_1^2/2)\}$$
(A6.13)

よって q_2 方向の積分幅は q_1 が大きいほど大きくなるが、 q_2 または回折次数 h_2 には依存しない。この積分幅が h_2 に依存しないのは、 Δa_{22}^2 がゼロであるからである。以上の理由により K_2 はD-2のような回折像を与える。回折像の q_1 方向への分離・解像は、 Δa_{21}^2 が大きくなるほど低下する。また $K(\mathbf{q})$ は K_1K_2 で与えられるので、A-2の回折像

- は、E-2となる.
- 3) B-2の格子歪みテンソルをもつ格子: $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv (\mathbf{II}/\mathbf{I})$

B-2格子はA-2格子を90°回転することにより得られるので、B-2格子の回折像 C, D, Eも、A-2格子の回折像C, D, Eを90°回転することにより得られる.

4) A-4の格子歪みテンソルをもつ格子: $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv (\mathbf{I}/\mathbf{IV})$

A-2格子と比較すると Δa_{22}^2 もゼロ以外の値となるので $\Delta a_{22}^2 = \Delta a_{21}^2 = \Delta a^2 \neq 0$. K_2 因子のq空間中での積分幅 $\delta \beta(h_2)$ は, (12.117), (12.78)式より

$$\begin{split} \delta \beta(h_2) &= \pi \bar{a}_2^* \left[1 - |F_2| \right] \\ &= \pi \bar{a}_2^* \left\{ 1 - \exp[\Delta a^2 (q_1^2 + q_2^2)/2] \right\} \\ &= \pi \bar{a}_2^* \left\{ 1 - \exp\left[-\frac{1}{2} \Delta a^2 q_1^2 - 2\pi^2 \left(\frac{\Delta a}{\bar{a}_2} \right)^2 h_2^2 \right] \right\} \end{split}$$
(A6.14)

 q_2 方向の積分幅は q_1 のみならず、 q_2 または回折次数 h_2 にも依存する. この点がD-2 の回折像とD-4の回折像との相違、E-2の回折像とE-4の回折像との相違の原因に なる.

5) A-3の格子歪みテンソルをもつ格子: $H_{10}(\mathbf{r})/H_{01}(\mathbf{r}) \equiv (\mathbf{I}/\mathbf{III})$

 $\Delta a_{11}^2 = \Delta a_{12}^2 = 0$ であるから、 K_1 はA-1, A-2格子の場合と同様C-3で与えられる. 一方、 $\Delta a_{21}^2 = 0$ 、 $\Delta a_{22}^2 = \Delta a^2$ であるから、(12.78)式または(A6.6)式より

$$|F_2(\mathbf{q})| = \exp(-\Delta a_{22}^2 q_2^2/2) \tag{A6.15}$$

また $K_2(\mathbf{q})$ は(A6.11)式で与えられる.したがって,A-1,A-2格子の場合と同様(A6.12) 式を満足する q_2 に対しては、すべての q_1 に対して K_2 は極大値をとる.また K_2 の回折 極大のq空間での積分幅は、(12.117)、(12.78)式より

$$\begin{split} \delta \beta(h_2) &= \pi \overline{a}_2^* [1 - |F_2|] \\ &= \pi \overline{a}_2^* [1 - \exp(-\Delta a_{22}{}^2 q_2{}^2/2)] \\ &= \pi \overline{a}_2^* [1 - \exp(-2\pi^2 g_{22}{}^2 h_2{}^2)] \end{split} \tag{A6.16}$$

となる.よって、 q_2 方向の積分幅は q_2 (回折次数 h_2)の増加とともに増加するが、A-2、 A-4格子と異なり、 q_1 に依存しない.したがって、 K_2 はD-3のような回折像を、 $Z(\mathbf{q}) = K_1K_2$ はE-3のような回折像を示す.

以上の議論に基づき他のすべての格子の回折像も予想することができる.

付録7 ナノ複合体の階層構造の物性論的解析

ここでは、ナノ金属微粒子と高分子とのナノ複合体が発現する微粒子の分散構造お よびその階層構造の解析例について言及する.高分子マトリックス中における球状の ナノ金属微粒子間には**実効的粒子間相互作用**(effective interparticle interaction)が存在 する.この相互作用が複合体中のナノ金属微粒子の空間分布,すなわち分散構造に及 ぼす効果を議論しよう.

付録7.1 ■ ナノ複合体の合成と複合体中における金属微粒子の階層 構造

この章で紹介するナノ複合体は、高分子媒体中に一様に溶解した金属塩を金属原子 に化学的に還元することにより得られる.このようにして得られる金属微粒子は、そ の半径が典型的に数nmオーダーの大きさまでにしか成長せず、最小の構造単位とし て高分子媒体中に安定に分散するという特徴を有する.

図A7.1は、ブロック共重合体固体中に分子レベルで均一に溶解させた金属錯体[パ ラジウムアセチルアセトナート,palladium acetylacetonate, Pd(acac)₂]の熱還元反応 開始後のパラジウム微粒子(Pd)_nの時間発展を示す¹⁾. SAXSの形状因子の解析により (Pd)_nは球状粒子であること、半径Rの分布関数にGauss関数を仮定してその重量平 均半径 R_w および数平均半径 R_n を求めるとそれらは還元温度 T_r に依存した成長速度を

図A7.1 ブロック共重合体のバルク中のPd(acac)₂の還元過程におけるパラジウムナノ粒子 (Pd)_nの時間発展¹⁾. R_n , R_w は(Pd)_nのそれぞれ数平均,重量平均半径, σ_R は半径の 分布に対する標準偏差. a_r は基準温度を142°Cにしたときの R_n , R_w の時間発展に関 する時間一温度換算則を示すシフト因子.

付録7の記号

 $S_{TP}(q)$: (A7.6)式で定義された Zernike-Prinsの構造因子

- $S_{\text{HS/inf}}(q)$, $I_{\text{HS/inf}}(q)$:無限空間に存在し、斥力ポテンシャルをもった剛体球(hard sphere, HSと略)に対する構造因子、散乱強度分布
- S_{ZP,hs}(q): 斥力ポテンシャルをもった剛体球(HS)に対するZernike-Prinsの構造因子, S_{HS/inf}(q)に等しい.
- $c_{\text{PY,hs}}(r), S_{\text{PY,hs}}(q)$: 斥力ポテンシャルをもった剛体球に対してPercus-Yevick (PY)方 程式を用いて計算した直接相関関数 $c_{\text{PY,hs}}(r)$ とそれより計算された構造因子 $S_{\text{PY,hs}}(q)$

ρ: 球の数密度

 ϕ_{s} : 球の体積分率

- $S_{\text{SHS/inf}}(q), I_{\text{SHS/inf}}(q)$:無限空間に分布する粘着性剛体球(SHS)に対する構造因子, 散乱強度分布
- S_{ZP,shs}(q):無限空間に分布する粘着性剛体球(SHS)に対するZernike-Prinsの構造因子, S_{SHS/inf}(q)に等しい.
- c_{PY,shs}(r), S_{PY,shs}(q):粘着性剛体球(SHS)に対してPercus-Yevick(PY)方程式を用いて計算された直接相関関数c_{PY,shs}(r)とそれより計算された構造因子 S_{PY,shs}(q)

 $S_{\text{cluster}}(q)$: クラスター内に閉じ込められた球からの構造因子

 $\rho_{\text{center,c}}(\mathbf{r})$: クラスター内における球状粒子の中心の数密度の空間分布

ρ_{center,∞}(r):無限空間内における球状粒子の中心の数密度の空間分布

 $\sigma_{c}(\mathbf{r})$: クラスターの形状関数[(A7.28)式で定義]

- $p_{c}(\mathbf{r}): クラスター内における散乱能密度の空間分布$
- V_{ir}:入射ビームによる試料の照射体積
- *I*_{HS/cluster}(*q*):クラスター内に閉じ込められ、斥力相互作用をもった剛体球(HS)からの散乱強度分布
- *I*_{SHS/cluster}(*q*):クラスター内に閉じ込められ,粘着性相互作用をもった剛体球(SHS) からの散乱強度分布

 $\rho_{\text{center,MF}}(\mathbf{r})$:マスフラクタル (MF)を形成するクラスターの中心の数密度の空間分布 $S_{\text{MF}}(q)$:マスフラクタル構造の構造因子

 $I_{\text{INP}}(q)$:独立散乱(independent scattering)強度

-u₀:粘着性剛体球の引力相互作用ポテンシャルの深さ

△:粘着性剛体球の引力相互作用ポテンシャルの及ぶ空間範囲(幅)

〈R_c〉: 球状クラスターの半径の平均値

 $\phi_{n/cluster}$: クラスター中で球状粒子が占める体積分率

Rga:粘着性剛体球粒子が形成する動的会合体の回転半径

図A7.2 高分子媒体中で還元反応により生成したパラジウム原子Pd(0)の微粒子(Pd)_nへの 成長過程を示す模式図.

示すことが判明した. $T_r = 180^{\circ}\mathbb{C}$ での $(Pd)_n$ の成長速度は速く, R_w は約30分で一定値 3 nm (定常値)に到達している[図A7.1 (a)]. これに反して $T_r = 142^{\circ}\mathbb{C}$ では350分で定 常値3 nm に達した[図A7.1 (b)]. 定常値に到達するまでの $(Pd)_n$ の成長則はべき乗則, $R_n \sim t^m$, $R_w \sim t^l$ に従う. その指数は*m*, *l*は T_r に依存しない. この成長則に関しては時 間一温度換算則が成立するようであり, $T_r = 142^{\circ}\mathbb{C}$ を基準温度として, この温度での シフト因子 $a_T \varepsilon 1$ とし $T_r = 180^{\circ}\mathbb{C}$ での $a_T \varepsilon 11.7$ としたときの R_n , R_w の換算プロット (c), 分布関数の相対偏差 σ_R/R_n の換算プロット(d)は T_r に依存しない普遍関数となっ た.

図A7.1から予測される(Pd)。の成長過程を模式的に図A7.2に示す. 還元されたパラ ジウム原子Pd(0)(図中で丸印の記号で示す)は、高分子媒体中を激しくBrown(ブラ ウン)運動をして[図A7.2(a)]衝突合体し、ナノ微粒子(Pd)。に成長すると同時に(Pd)。 はPd(0)を吸収することによっても成長する.また生成した(Pd),同士も拡散,衝突, 合体・融合(welding)をし、さらに成長する「図A7.2 (b)]、大きな (Pd) よど拡散は遅 くなり、衝突合体による成長は遅くなるのでσ, / R。は時間とは時間とともに減少する ものと考えられる. $(Pd)_n$ が臨界寸法 R_{wc} , R_{nc} に達すると $(Pd)_n$ は高分子鎖に捕縛され, 拡散, 衝突, 合体・融合による成長はなくなる. この状態では還元反応により生成し たガス状Pd(0)原子が存在するとすれば、この原子の(Pd),への衝突吸収による(Pd), の成長のみが起こる[図A7.2 (c)]. ちなみに図A7.1の例ではブロック共重合体の回転 半径 $R_{a} \approx 4.3 \text{ nm}$ に対して、 $R_{wc} \approx 3 \text{ nm}$ に相当する(Pd)_aの回転半径は2.3 nmである. 図A7.2 (a) においてPd(0) はガス状態であり. (b) における (Pd), 微粒子中のPd(0) は 液体状態で、(Pd),は衝突合体により、より大きな球に融合するものと考えられる. べき指数mが1/3に近いことは拡散, 衝突, 合体・融合による液状(Pd),の成長を示 唆する. (c)では(Pd). は結晶化していて、衝突しても合体・融合をしないであろう. また衝突自体も媒体を形成する高分子鎖のエントロピー反発により避けられると考え られる(後述,図A7.10参照).

以下には重量平均分子量M_w=9.1×10³,分子量分布の不均一指数M_w/M_n=1.05(M_n

図A7.3 還元反応終了後,溶媒BAを蒸発除去した後の(Pd)"/P2VP複合体の超薄切片から得 られた透過電子顕微鏡像². 左上隅の挿入図は拡大像を示す.

は数平均分子量)のポリ(2-ビニルピリジン) [poly(2-vinylpyridine), P2VP] (15.81 wt%), ベンジルアルコール (benzyl alcohol, BA) (82.61 wt%), Pd(acac)₂(1.58 wt%)の均一溶 液を $T_r = 100^{\circ}$ Cで還元したときに生ずる (Pd)_nの分散構造の解析例²⁾を示す. BAは P2VP, Pd(acac)₂の溶媒であると同時に高温(約80°C以上)ではPd(acac)₂の還元剤で もある.構成成分の密度から計算したP2VP, Pd, BAの体積分率%はそれぞれ14%, 0.049%, 85.951%であり, Pdの化学量論的体積分率 ϕ_{Pd} はきわめて小さいことが特徴 的である.溶液は密封したSAXS用セルに封入し,還元中の溶液濃度は一定に保持さ れた.

図A7.3 は、還元反応終了後、SAXS測定を行った後の溶液試料の溶媒 BAを蒸発除 去して得られた (Pd)_n/P2VP 複合体の超薄切片から得られた透過電子顕微鏡 (TEM) 像 を示す. 図A7.4 に示すように溶媒 BAの蒸発前後で得られた $q \ge 0.07 \text{ nm}^{-1}$ でのSAXS 曲線(それぞれ曲線1,2)がまったく等価であることから、少なくとも $2\pi/0.07 \cong 90 \text{ nm}$ 以下の長さのスケールの構造は溶媒の蒸発前後で保持されていることが判明する. 図 A7.3 の左上隅の挿入図より,直径約4 nmの球状(Pd)_n(黒い粒子)が観察され、このナ ノ微粒子が、自己相似性をもった樹枝状のマスフラクタル構造を構築していることが 推察できる. この画像は、(1)この特徴的な構造の発現・形成機構は何か、(2)マスフ ラクタル構造の詳細を可視化するという利点をもつ反面、超薄切片の厚みが約60 nm にすぎないことから、このTEM 像は(Pd)_nの3次元分散構造の2次元断面像にすぎな いこと、3次元構造の一部にしかすぎないことなど、情報の統計的信頼度、定量性に 欠けるという欠点も看過することができない、この欠点は、散乱法により最も有効に 補足することができる. 散乱法は入射ビームの照射体積中に存在する3次元構造の統

図A7.4 還元反応終了後の(Pd)_#/P2VP/BA溶液のその場SAXS曲線1と溶媒BAを蒸発除去 後(100℃, 5時間)のSAXS曲線2の比較². 両曲線ともTDS補正後に得られた曲線 である.

計平均に関する定量的知見を与えるという利点をもつ.

図A7.3のTEMに対応するSAXSデータ(図A7.4)は、図中に矢印で示した"幅広い肩" をもち、以下に示すI, II, IIIの3つのq領域に分類することができるという特徴をもつ. 領域I ($q > 1 \text{ nm}^{-1}$)の散乱曲線では、 $q \approx 3 \text{ nm}^{-1}$ に散乱極大、 $q \approx 1.5 \text{ nm}^{-1}$ に平坦部を示す.

領域 II (0.2<q/nm⁻¹<1)での散乱曲線は、q ≅ 0.4 nm⁻¹を中心とした幅広い肩をもつ ことが特徴的である.

領域III ($q < 0.2 \text{ nm}^{-1}$) ではqの減少にともなうI(q)の増加率が領域IIの $0.2 \leq q < 0.4 \text{ nm}^{-1}$ の領域におけるI(q)の増加率より大きくなる. これら散乱曲線が啓示する物 性論的意義を以下に議論する. まず付録7.2ではこの種の散乱の理論的背景について 言及し,付録7.3~7.5でのその理論解析結果と物理的意義について言及する.

付録7.2 ■ ナノ複合体の階層構造の物性論的解析方法,理論的背景

A. 一般化Zernike-Prins式とPercus-Yevick方程式

半径 $R_{\rm s} \cong 2 \,\mathrm{nm}$ のナノ微粒子の集合体全体からの微分散乱断面積 $\partial \Sigma(q) / \partial \Omega$ または構造因子 $|F_{\rm t}(q)|^2$ は、Zernike-Prins (ZP)の式(11.40)と第11章ノート11.1より次式

$$\frac{\partial \Sigma(q)}{\partial \Omega} = |F_{\rm t}(q)|^2 = |F_{\rm s}(q)|^2 S(q)$$
(A7.1)

で与えられる.ここで微粒子が球である場合には|F_s(q)|²は球の構造因子に等しく, (9.4)式の第2式で与えられる.Fの下付き添え字tおよびsはそれぞれ粒子の集合体の 付 録

全体(totalのt)および粒子が球(sphereのs)であることを意味する. (A7.1)式において 球の半径 R_s は便宜上単分散とした. S(q)は球の中心の空間分布に依存する構造因子 でZernike-Prins (ZP)理論により次式で与えられる[(11.44)式参照]³.

$$S(q) = N_{\rm t} \left\{ 1 + \rho \int_0^\infty P(r) \frac{\sin qr}{qr} 4\pi r^2 dr \right\}$$
(A7.2)

 N_t は入射ビームに照射された試料の体積 V_{ir} 中の球の総数であり、 ρ は球の数密度 N_t/V_{ir} である. P(r)は球の中心の空間分布に関する動径分布関数である. ここでは第 11章の中心間距離Rを便宜上rに置き換えた.

(11.69)式に示したP(r)と全相関関数h(r)との関係を用いると,

$$P(r) = P(r) - 1 + 1 = h(r) + 1$$
(A7.3)

(A7.2), (A7.3)式より一般化ZP式を得る.

$$S(q) = N_{t} \left[1 + \rho \left\{ T(q) + \int h(r) \frac{\sin qr}{qr} 4\pi r^{2} dr \right\} \right] \quad (-\Re t ZP \vec{x})$$
(A7.4)

$$T(q) = \int \frac{\sin qr}{qr} 4\pi r^2 dr = (2\pi)^3 \delta(q) \quad (球状の照射体積) \qquad (A7.5)^{(\prime-\uparrow A7.1)}$$

ここで、T(q)は粒子密度が完全に一様な系,すなわちh(r) = 1の系の散乱強度を示す. 照射体積が無限に大きくなればT(q)はDiracのデルタ関数 $\delta(q)$ に漸近するので、 $q \neq 0$ を満足する有限なqではゼロとなる.したがって、十分大きな照射体積 V_{tr} 中に分散した粒子を問題とし、かつq=0を除く有限なqにおけるS(q)を対象とする場合には、(A7.4)式においてT(q)を無視することができる.**ZP理論**はこの場合を対象としている.この場合の構造因子を $S_{ZP}(q)$ と定義すると $S_{ZP}(q)$ は次式で与えられる.

$$S_{\rm ZP}(q) \equiv 1 + \rho \int h(r) \frac{\sin qr}{qr} 4\pi r^2 dr$$

$$= 1 + \rho h(q)$$
(A7.6)

付録7.2のD項では、有限な空間(クラスター)内に拘束された粒子の散乱を議論す る.この場合には、*T*(*q*)は無視することができない項となる(後述).この*T*(*q*)を含 めたZP式を一般化ZP式と定義する。十分大きな照射体積が球でなく、入射ビーム軸 と同軸の円柱(円柱状照射体積)や一辺が入射ビーム軸に平行な立方体(または直方体) (直方体状照射体積)であるとき*T*(*q*)は照射体積の形状とは関係なく共通して次式で 与えられる。

$$T(q) = (2\pi)^{3}\delta(q)$$
 (円柱状照射体積^(/-トA7.2)および
直方体状照射体積^(/-トA7.3)) (A7.7)

いま,円柱状または直方体状照射体積に対する*S*(*q*)は(A7.4),(A7.7)式より次式で与 えられる.

$$S(q) = N_{t}[(2\pi)^{3}\rho\delta(q) + S_{ZP}(q)] \qquad (- \Re \ell ZP \vec{z})$$
(A7.8)

*q*空間でのOrnstein-Zernike(OZ)方程式⁴⁾を用いると(A7.6)式第2式の*h*(*q*)は,(11.68) 式より

$$h(q) = c(q) + \rho h(q)c(q) \tag{A7.9}$$

で与えられる. ここで, *c*(*q*)は直接相関関数のFourier変換を意味する. (A7.6)式の 第2式, (A7.9)式より

$$S_{ZP}(q) = \frac{1}{1 - \rho c(q)}$$
 (A7.10)

が得られる. 実空間における直接相関関数c(r)は**Percus–Yevick** (PY)**方程式**⁵⁾また はhypernetted chain (HNC)方程式で与えられる. 本項で用いる PY方程式においては c(r)は次式で与えられる.

$$c(r) = P(r) \left\{ 1 - \exp\left[\frac{u(r)}{k_{\rm B}T}\right] \right\}$$
(A7.11)

u(r)は粒子間相互作用ポテンシャルエネルギーを示す.u(r)が与えられれば、(A7.3)、(A7.11)式よりh(r)とc(r)との関係式が得られる.この関係式と(A7.9)式よりc(q)が求められるので、(A7.10)式より $S_{ZP}(q)$ を求めることができる.

B. 剛体球モデル(hard sphere model)の構造因子 S_{HS/inf}(q)

本項では無限空間に分散した剛球体からの散乱についてまとめる. その詳細はすで に11.6節で記述した. 図A7.5 (a)は、剛球体(hard sphere, HSと略す)の粒子間斥力ポ テンシャルエネルギー u(r)を示す.

$$u(r) = \begin{cases} +\infty & (r \le 2R_{\rm s}) \\ 0 & (r > 2R_{\rm s}) \end{cases}$$
(A7.12)

図A7.5(c)は粒子が十分大きな空間(無限空間)に分散している状態を模式的に示す. それに対して、図A7.5(d)は粒子が有限な空間(クラスター空間)に拘束され、その内 部に分散している状態を模式的に示す.

図A7.5 (a) と(c) で特徴づけられる無限空間に分散した剛体球粒子の構造因子S(q) を $S_{\text{HS/inf}}(q)$ と定義すると、(A7.8) 式において、 $q \neq 0$ を除く有限なqに対して右辺第1 項が無視できるので、 $S_{\text{HS/inf}}(q)$ は次式で与えられる.

$$S_{\text{HS/inf}}(q) = N_{\text{t}} S_{\text{ZP,hs}}(q) \quad (\text{HS} \neq \vec{\mathcal{T}} \mathcal{W}) \tag{A7.13}$$

ここで、 $S_{\text{HS/inf}}(q)$ の下付き添え字HS/infのinfは無限空間(infinite space)を意味し、 HS/infは無限空間に存在するHSを意味する. また $S_{\text{ZP,hs}}(q)$ はHSモデル(hs)に対する

図A7.5 粒子間相互作用ポテンシャルu(r)と粒子の空間分布に関する模式図. (a)ハードコ ア斥力相互作用を有する剛体球, (b)ハードコア斥力相互作用を有する剛体球の周 辺に引力相互作用を有する粘着性剛体球, (c)無限に大きい空間(入射ビームに照射 された空間)における粒子の分散, (d)拘束空間(クラスター)内における粒子の分散.

<u>S_{ZP}(q)を意味する</u>.上式でS_{ZP,hs}(q)は一般に(A7.10)式で与えられる.PY方程式と剛 球体の斥力ポテンシャルu(r)を用いて得られたc(r)を $c_{PY,hs}(r)$ と定義し、そのFourier 変換を $c_{PY,hs}(q)$ と定義する.(A7.10)式のc(q)が $c_{PY,hs}(q)$ に等しいとき、S_{ZP}(q)はS_{ZP,hs}(q) に等しい、したがって

$$S_{\text{ZP,hs}}(q) = \frac{1}{1 - \rho c_{\text{PY,hs}}(q)} \quad (\text{HS} \neq \vec{\tau} \cdot \mathcal{V})$$
(A7.14)

Wertheim⁶⁾は $c_{\text{PY,hs}}(r)$ の解析解が第11章(11.72)式で与えられることを示した. その Fourier 変換 $c_{\text{PY,hs}}(q)$ は(11.77)式で与えられ、この積分を解き(A7.14)式に代入すると $S_{\text{ZP,hs}}(q)$ は(11.78a),(11.78b)式で与えられる. この結果を以下に再びまとめて記す.

$$S_{\text{ZP,hs}}(q ; R_{\text{s}}, \phi_{\text{s}}) = \{1 + 24\phi_{\text{s}}[G(A)/A]\}^{-1} \quad (\text{HS} \notin \vec{\mathcal{T}} \mathcal{W})$$

$$A = 2qR_{\text{s}} \tag{A7.15}$$

$$(1 - \phi_{\text{s}})^{4} G(A) = \frac{\alpha}{A^{2}}(\sin A - A\cos A) + \frac{\beta}{A^{3}}\{2A\sin A + (2 - A^{2})\cos A - 2\}$$

$$+ \frac{\gamma}{A^{5}}[-A^{4}\cos A + 4\{(3A^{2} - 6)\cos A + (A^{3} - 6A)\sin A + 6\}]$$

$$\alpha = 1 + 2\phi_{s}^{2}, \quad \beta = -6\phi_{s}\left(1 + \frac{\phi_{s}}{2}\right)^{2}$$

$$\gamma = \frac{1}{2}\phi_{s}(1 + 2\phi_{s})^{2} \quad (A7.16)$$

$$\phi_{s} = \frac{4\pi}{3}R_{s}^{3}\rho$$

 ϕ_s は球の体積分率である(11.6節では $\phi_s \epsilon \phi_p$ と定義した).

C. 粘着剛体球モデルの構造因子 $S_{SHS/inf}(q)$

Baxter²⁰はu(r)として剛体球(ハードコア)斥力型ポテンシャルのまわりに引力ポテ ンシャルが存在し、その広がりが無限小で深さが無限に深い引力ポテンシャルをもっ tu(r)に対してPY方程式の解析解を提出した.これを粘着剛体球(sticky hard sphere, SHS)モデルと称した.このSHSモデルは、HSモデルでは不可能であった1 次相転移を解析的に予言することを可能にした.またSHSモデルにより得られた結 果は、より実在の系に近いLennard-Jonesポテンシャルに対して数値的に得られた結 果と定性的に一致した.Menonら⁸⁰は、図A7.5(b)にしたようにハードコア斥力ポテ ンシャルのまわりに有限の広がり Δ 、有限の深さ u_0 をもった箱型引力ポテンシャルを 用いてBaxterモデルの一般化を提案し、無限空間に分散した球状粒子の熱力学的性 質や構造因子を議論した.この構造因子を $S_{SHS/inf}(q)$ と定義する.

$$u(r) = \begin{cases} +\infty & (r \le 2R_{\rm s}) \\ u_0 & (2R_{\rm s} < r \le 2R_{\rm s} + \Delta) \\ 0 & (2R_{\rm s} + \Delta < r) \end{cases}$$
(A7.17)

彼らは(A7.17)式のu(r)に基づきPY方程式を用い,さらにOZ方程式のWiener-Hopf 因数分解(factorization)を用いて $S_{SHS/inf}(q)$ の解析解を与えた.それらの詳細は11.7節 で論じたが,以下にその結果をまとめる.

前項と同様 $S_{SHS/inf}(q)$ は

$$S_{\text{SHS/inf}}(q) = N_t S_{\text{ZP,shs}}(q) \quad (\text{SHS} \neq \vec{\mathcal{T}} \mathcal{V})$$
 (A7.18)

で与えられる.ここで、 $S_{ZP,shs}(q)$ はSHSモデルに対する $S_{ZP}(q)$ と定義する.(A7.17) 式のu(r)と(A7.11)式で与えられる PY方程式に基づき計算されたc(q)を $c_{PY,shs}(q)$ で定義すると、 $S_{ZP,shs}(q)$ は次式で与えられる.

$$S_{\text{ZP,shs}}^{-1}(q) = 1 - \rho c_{\text{PY,shs}}(q) = A^2(q) + B^2(q) \quad (\text{SHS} \neq \vec{\tau} : \mathcal{V})$$
 (A7.19)

$$A(q) = 1 + 12\eta \left(\alpha_{a} \frac{\sin U_{a} - U_{a} \cos U_{a}}{U_{a}^{3}} + \beta_{a} \frac{1 - \cos U_{a}}{U_{a}^{2}} - \frac{\lambda}{12} \frac{\sin U_{a}}{U_{a}} \right)$$
(A7.20)

付 録

$$B(q) = 12\eta \left\{ \alpha_{a} \left(\frac{1}{2U_{a}} - \frac{\sin U_{a}}{U_{a}^{2}} + \frac{1 - \cos U_{a}}{U_{a}^{3}} \right) + \beta_{a} \left(\frac{1}{U_{a}} - \frac{\sin U_{a}}{U_{a}^{2}} \right) - \frac{\lambda}{12} \frac{1 - \cos U_{a}}{U_{a}} \right\}$$
(A7.21)

$$\begin{split} U_{a} &= q a_{w} \\ a_{w} &= 2 R_{s} + \Delta \\ \alpha_{a} &= (1 + 2 \eta - \mu_{s}) / (1 - \eta)^{2} \\ \beta_{a} &= (-3 \eta + \mu_{s}) / [2(1 - \eta)^{2}], \quad \mu_{s} = \lambda_{s} \eta (1 - \eta) \end{split}$$
 (A7.22)

 η は半径 $a_w/2 = R_s + \Delta/2$ の仮想球の体積分率である.

$$\eta = \frac{\pi a_{\rm w}^3}{6} \rho = \left(\frac{a_{\rm w}}{2R_{\rm s}}\right)^3 \phi_{\rm s} \tag{A7.23}$$

パラメータん。は下記の2次方程式の解である.

$$\frac{\eta}{12}\lambda_{s}^{2} - \left(\tau + \frac{\eta}{1-\eta}\right)\lambda_{s} + \frac{1+(\eta/2)}{(1-\eta)^{2}} = 0$$
(A7.24)

ここで,

$$\tau = \frac{1}{12\varepsilon} \exp\left(\frac{u_0}{k_{\rm B}T}\right), \quad \varepsilon = \frac{\Delta}{2R_{\rm s} + \Delta} \tag{A7.25}$$

D. クラスター(有限空間)内に閉じ込められた剛体球、粘着剛体球の構造因子 $S_{\text{cluster}}(q)$

10.9節では、酢酸パラジウムと第2世代ポリアミドアミンデンドリマーとがジメチ ルホルムアミド/メタノール混合溶液中で生成する球状の分子集合体と、この分子集 合体をテンプレートとしてその内部の空間に形成されるパラジウムナノ微粒子(Pd)_n を、時間分解SAXS, SANSを用いてその場観察した(図10.35,図10.36参照).これに よりテンプレートという閉じ込められた空間で形成される(Pd)_nの時間発展を明らか にした.テンプレート(分子集合体)がナノ微粒子生成に関して拘束空間の場を提供し ていると考えると、この問題は図A7.5(d)の拘束空間中に形成される(a)または(b)の 粒子間相互作用をもった微粒子の分散の問題へと一般化することができる.

現在に至るまで無限空間に分散したHSモデル,SHSモデルに従う粒子とこれらモ デルに基づく原子,分子性液体またはコロイド液体の構造解析は数多く展開されてい る.他方,<u>拘束空間(またはクラスター内)に存在するHS,SHS粒子</u>の研究は皆無であ る.「拘束空間中に存在する微粒子」の問題は相分離,相分離過程中の液体の構造を 考える上で,液体論的にも重要な問題と考えられる.

いま、クラスター内での粒子の空間分布を反映したクラスター内の散乱能密度の分 布を $p_c(\mathbf{r})$ とすると、これは図A7.6 (a)で示したようにクラスター内での粒子の中心 の空間分布 $\rho_{center,c}(\mathbf{r})$ と粒子内の散乱能密度の空間分布 $p_p(\mathbf{r})$ とのたたみ込みで与えら れる.

図A7.6 (a) $\rho_{\text{center,c}}(\mathbf{r}), p_{p}(\mathbf{r})$ から $p_{c}(\mathbf{r})$ を得る. (b) $\rho_{\text{center,w}}(\mathbf{r}), \sigma_{c}(\mathbf{r})$ から $\rho_{\text{center,c}}(\mathbf{r})$ を得る. $\rho_{\text{center,w}}(\mathbf{r})$ は $\rho_{\text{center,c}}(\mathbf{r})$ のレプリカである.

$$p_{\rm c}(\mathbf{r}) = \rho_{\rm center,c}(\mathbf{r}) * p_{\rm p}(\mathbf{r}) \tag{A7.26}$$

一方, $\rho_{\text{center,c}}(\mathbf{r})$ は図A7.6(b)で示すように、クラスター内の粒子の空間分布を無限空間にレプリカした(複製した) $\rho_{\text{center,x}}(\mathbf{r})$ とクラスター空間の形状関数 $\sigma_{c}(\mathbf{r})$ との積で与えられる.

$$\rho_{\text{center,c}}(\mathbf{r}) = \rho_{\text{center,m}}(\mathbf{r})\sigma_{c}(\mathbf{r})$$
(A7.27)

$$\sigma_{\rm c}(\mathbf{r}) = \begin{cases} 1 & (\mathbf{r} \in \mathcal{P} \, \bar{\supset} \, \mathcal{X} \, \mathcal{P} -) \\ 0 & (\mathbf{r} \notin \mathcal{P} \, \bar{\supset} \, \mathcal{X} \, \mathcal{P} -) \end{cases}$$
(A7.28)

1個のクラスターからの独立散乱に関する微分散乱断面積は第6章(6.21)式より

$$\frac{\partial \Sigma(q)}{\partial \Omega} = |F_{\rm c}(q)|^2 = \int \tilde{\vec{p}}_{\rm c}(\mathbf{r}) \exp(\mathrm{i}\mathbf{q}\cdot\mathbf{r}) d\mathbf{r} = \tilde{\vec{p}}_{\rm c}(\mathbf{q}) \tag{A7.29}$$

ここで、 $\overset{2}{\tilde{p}_{c}}(\mathbf{r})$ は $p_{c}(\mathbf{r})$ の自己相関関数または自己たたみ込みであり

$$\hat{\tilde{p}}_{c}(\mathbf{r}) \equiv \int p_{c}(\mathbf{r}_{1}) p_{c}(\mathbf{r}+\mathbf{r}_{1}) d\mathbf{r}_{1}$$
(A7.30)

 $\hat{\tilde{p}}_{c}(\mathbf{q})$ は $\hat{\tilde{p}}_{c}(\mathbf{r})$ のFourier変換である.自己たたみ込みの公式(10.190)および(A7.26)式より

$$\tilde{\tilde{\rho}}_{c}(\mathbf{r}) = \tilde{\tilde{\rho}}_{center,c}(\mathbf{r}) * \tilde{\tilde{\rho}}_{p}(\mathbf{r})$$
(A7.31)

(A7.27), (A7.31)式より

$${}^{\hat{\tilde{p}}}_{c}(\mathbf{r}) = \frac{1}{V_{ir}} \left[\tilde{\tilde{\rho}}_{center,\infty}^{2}(\mathbf{r}) \tilde{\tilde{\sigma}}_{c}(\mathbf{r}) \right] * \tilde{\tilde{p}}_{p}(\mathbf{r}) \qquad (A7.32)^{(\prime-\,\flat\,A7.4)}$$

上式のFourier変換をすると(第10章ノート10.23参照)

$$\frac{\partial \Sigma(\mathbf{q})}{\partial \Omega} = \frac{2}{\tilde{p}_{c}}(\mathbf{q}) = \frac{1}{V_{ir}} \left[\tilde{\rho}_{center,\infty}^{2}(\mathbf{q}) * \tilde{\sigma}_{c}^{2}(\mathbf{q}) \right] \tilde{p}_{p}(\mathbf{q})$$
(A7.33)

この節で取り扱う球状粒子系に対しては、添え字p(particleのp)を添え字s(sphere のs)に置換する.また散乱はqの大きさqのみに依存する. $\hat{\rho}_{\text{center,x}}^2(q)$ は、一般化ZP

式であるS(q)[(A7.8)式]に等しい. $\tilde{\tilde{b}}_{p}(\mathbf{q})$ は第6章(6.19)~(6.21)式より球状粒子の構造因子 $|F_{s}(q)|^{2}$ に等しい(下付き添え字sはsphereの頭文字である). したがって, (A7.33)式は(A7.8)式を用いて次式で表される,

$$\frac{\partial \Sigma(q)}{\partial \Omega} = |F_{c}(q)|^{2}$$

$$= \frac{1}{V_{ir}} |F_{s}(q)|^{2} \left[S(q) * \tilde{\tilde{\sigma}}_{c}(q) \right]$$

$$= \rho |F_{s}(q)|^{2} \left[(2\pi)^{3} \rho \tilde{\tilde{\sigma}}_{c}(q) + S_{ZP}(q) * \tilde{\tilde{\sigma}}_{c}(q) \right]$$
(A7.34)

ここで、 $\rho = N_t/V_t$ は照射体積中の球の総数であるが、この場合照射体積中には1個の クラスターが存在し、すべての球はクラスター内に閉じ込められている場合を想定し ているので、この ρ はクラスター中での粒子の数密度であることに注意しよう. (A7.34)式石辺第1項の $(2\pi)^3 \rho^2 \tilde{\delta}_c(q)$ は一般化ZP式[(7.32)式]の石辺第1項に起因す る.その物理的意味は、十分大きい照射体積中に存在する一様な粒子密度 ρ をもった 均一な[すなわち、クラスター内部のあらゆる点でh(r) = 1を満足する]クラスター全 体からの散乱(微分散乱断面積または構造因子)を示すことにある、クラスターのまわ りの媒体中の粒子の数密度 ρ がゼロでなく、有限な ρ_m をもつときには ρ は($\rho - \rho_m$)で 置き換えられるべきである。他方、第2項の $\rho S_{ZP}(q)^* \tilde{\delta}_c(q)$ は、クラスター内の粒子中 心の空間分布h(r)に起因する散乱(微分散乱断面積または構造因子)を示す、この項は 粒子間相互作用ポテンシャルに依存する。

 $F_s(q)$ は(9.4)式の第2式で与えられるから,

$$|F_{\rm s}(q)|^2 = (p_{\rm s} - p_{\rm m})^2 V_{\rm s}^2 \Phi^2(U_{\rm s}), \quad U_{\rm s} = qR_{\rm s}$$
(A7.35)

 p_{s}, p_{m} は球およびその媒体の散乱能密度である.X線の場合,散乱能密度 p_{s}, p_{m} は第4 章(4.61)式の第1式で与えられるので,球と媒体との電子密度差を Δp_{e} とすると,

$$(p_{\rm s} - p_{\rm m})^2 = r_{\rm e}^2 \sin^2 \gamma \,\Delta \rho_{\rm e}^2$$
 (A7.36)

(A7.35), (A7.36)式よりX線に対する1個の球の構造因子 |F_s(q)|²は

$$|F_{\rm s}(q)|^2 = r_{\rm e}^{\ 2} \sin^2 \gamma \ \Delta \rho_{\rm e}^{\ 2} V_{\rm s}^{\ 2} \Phi^2(U_{\rm s}) \tag{A7.37}$$

1個の球からの散乱強度*I*_s(*q*)は(A7.37)式および第6章(6.12)式および第4章(4.37b)式 より

$$I_{\rm s}(q) = \frac{I_{\rm i}}{R_{\rm D}^2} |F_{\rm s}(q)|^2 = I_{\rm e} \Delta \rho_{\rm e}^2 V_{\rm s}^2 \Phi^2(U_{\rm s})$$
(A7.38)

同様に、球状粒子からなるクラスター全体からの散乱強度 $I_{c}(q)$ は、(A7.34)、

(A7.37), (A7.38)式より

$$I_{\rm c}(q) = I_{\rm s}(q)\rho \left[(2\pi)^3 \rho \,\tilde{\tilde{\sigma}}_{\rm c}(q) + S_{\rm ZP}(q\,;R_{\rm s},\phi_{\rm s}) * \tilde{\tilde{\sigma}}_{\rm c}(q) \, \right] \tag{A7.39}$$

ここで、 $I_c(q)$ の添え字cはクラスター(cluster)からの散乱を意味する. クラスターが 半径 R_c の球と仮定すると、(A7.39)式における $\hat{\sigma}_c(q)$ は、(A7.35)式において $|F_s(q)|^2$ を $\hat{\sigma}_c(q)$ 、($p_s - p_m$)²を1, $R_s \in R_c$, $V_s \in \rho$ ラスターの体積 V_c で置き換えれば得られるので、 次式で与えられる.

$$\hat{\tilde{\sigma}}_{c}(q) = V_{c}^{2} \Phi^{2}(U_{c}), \quad U_{c} = qR_{c}, \quad V_{c} = 4\pi R_{c}^{3}/3$$
 (A7.40)

以上より,HSモデルに従う球状粒子がクラスター内に拘束されて分散していると きには、(A7.39)式の $S_{\text{ZP}}(q; R_{\text{s}}, \phi_{\text{s}})$ として(A7.15)式で与えられる $S_{\text{ZP,hs}}(q; R_{\text{s}}, \phi_{\text{s}})$ を用 いてその散乱強度分布 $I_{c}(q)$ を計算すればよい.他方、SHSモデルに従う球状粒子が クラスター内に拘束されて分散しているときには、(A7.39)式の $S_{\text{ZP}}(q; R_{\text{s}}, \phi_{\text{s}})$ として (A7.19)式で与えられる $S_{\text{ZP,shs}}(q; R_{\text{s}}, \phi_{\text{s}})$ を用いて $I_{c}(q)$ を計算すればよい.

E. クラスター, 粒子の大きさの多分散性の効果

A~D項では、クラスター、ナノ微粒子の大きさ R_c , R_s が単分散であることを仮定した. これらの大きさの多分散性の効果を考慮したときの系の散乱強度 $I_c(q)$ は (A7.39)、(A7.40)式より次式で与えられる.

$$I_{c}(q) = K_{6} \{ (2\pi)^{3} \rho \langle V_{s}^{2} \Phi^{2}(U_{s}) V_{c}^{2} \Phi^{2}(U_{c}) \rangle + \langle V_{s}^{2} \Phi^{2}(U_{s}) [S_{ZP}(q; R_{s}, \phi_{s}) * V_{c}^{2} \Phi^{2}(U_{c})] \rangle \}$$
(A7.41)

ここで、 $\langle X(R_s, R_c) \rangle$ は球状粒子およびクラスターの大きさの関数 $X(R_s, R_c)$ の大きさの分布に関する平均値である.また

$$K_6 = I_e \Delta \rho_e^2 \rho \tag{A7.42}$$

 S_{ZP} の R_s 依存性は、粒子間相互作用ポテンシャルu(r)の R_s 依存性に由来する.ここでは1)粒子の大きさの分布関数とクラスターの大きさの分布関数は互いに独立な事象と仮定する. S_{ZP} における R_s の分布の効果を考慮するとき、大きさ $R_{s,i}$ と $R_{s,j}(i,j=1,...,m,m$ は系を構成する粒子の総数)とをもったすべての(i,j)対が2体間ポテンシャル $u(r_{ij})$ を通して動径分布関数P(r)に及ぼす効果を考慮しなければならない.i番目の粒子の数密度を ρ_i とすると、 $\rho = \sum_{i=1}^{m} \rho_i$.したがって多分散系におけるP(r)および S_{ZP} $(q; \rho_i, R_{s,i})$ (i=1, ..., m)の計算はきわめて複雑である.ここではこの複雑さを回避するために、いわゆる「平均構造因子近似(average structure factor approximation)」を採用する⁹.この近似の下では2)多成分系の $S_{ZP}(q; \rho_i, R_{s,i})$ (i=1,, m)は、平均粒子

径 $R_{s,av}$ をもった単分散系のZP構造因子 $S_{ZP}(q; \rho, R_{s,av})$ に等しいと仮定する.上記1),2)の仮定の下に(A7.41)式は

$$I_{c}(q) = K_{6} \{ (2\pi)^{3} \rho \langle V_{s}^{2} \boldsymbol{\Phi}^{2}(U_{s}) \rangle \langle V_{c}^{2} \boldsymbol{\Phi}^{2}(U_{c}) \rangle + \langle V_{s}^{2} \boldsymbol{\Phi}^{2}(U_{s}) \rangle [S_{ZP}(q; \boldsymbol{R}_{s,av}, \phi_{s}) * \langle V_{c}^{2} \boldsymbol{\Phi}^{2}(U_{c}) \rangle] \}$$
(A7.43)

となる.ここで、平均〈 〉は次式で与えられる.

$$\langle V_k^2 \Phi^2(U_k) \rangle = \int_0^\infty P_N(R_k) \left(\frac{4\pi}{3} R_k^3\right)^2 \Phi^2(U_k) dR_k \quad (k = s \ddagger t c l \ddagger c) \quad (A7.44)$$

ここで、 $P_N(R_k)$ は R_k に関する規格化分布関数である. (A7.43)式の中の $R_{s,av}$ は

$$R_{\rm s,av}{}^{3} = \int_{0}^{\infty} P_{N}(R_{\rm s}) R_{\rm s}{}^{3} dR_{\rm s}$$
 (A7.45)

で与えられる.以下の解析では、分布関数として次式で与えられるSchutlz分布¹⁰⁾を 用いた.

$$P_N(R_k) = (z+1)^{z+1} X^z \frac{\exp[-(z+1)X]}{\langle R_k \rangle \Gamma(z+1)} \quad (k = s \ \text{tttc})$$
(A7.46)

ここで、 $X \equiv R_k / \langle R_k \rangle$ 、 $\langle R_k \rangle$ はk種の球の数平均半径(k = sまたはc)、 $z = (1/P_k^2) - 1$, $P_k = \sigma_k / \langle R_k \rangle$ はk種の球の多分散度と関係するパラメータ、 σ_k^2 は分布の分散(variance)、 $\Gamma(z)$ はガンマ関数である.

クラスターが無限に大きいときには、 $\langle V_c^2 \Phi^2(U_c) \rangle \rightarrow \delta(q)$ であるから、(A7.43)式は、 $q \neq 0$ を除く有限なqに対して

$$I_{t}(q) = K_{6} \langle V_{s}^{2} \boldsymbol{\Phi}^{3}(U_{s}) \rangle S_{\mathbb{Z}^{p}}(q; R_{s,av}, \phi_{s}) \quad (無限大の実空間, q \neq 0 を除くq空間)$$
(A7.47)

となる. この場合, クラスター全体からの散乱強度 I_c は全空間からの散乱強度にほか ならないのでIの添え字をcからt (total spaceの頭文字)に変えた. したがって, 無限 空間に分散しているHSに対する散乱強度 $I_t(q) \in I_{HS/inf}(q)$ と定義すると, これは上式 の S_{IP} を(A7.15)式の $S_{IP,hs}(q; R_{s,av}, \phi_s)$ で置き換えることにより得られるので,

$$I_{\rm HS/inf}(q) = K_6 \langle V_{\rm s}^2 \Phi^3(U_{\rm s}) \rangle S_{\rm ZP,hs}(q; R_{\rm s,av}, \phi_{\rm s})$$
(A7.48)

ここで(A7.15)式の R_{s} は、 $R_{s,av}$ で置き換えなければならないことに注意しよう. 同様 に無限空間に分散する SHS に対する散乱強度 $I_{t}(q) \in I_{SHS/inf}(q)$ とすると

$$I_{\rm SHS/inf}(q) = K_6 \langle V_{\rm s}^{\ 2} \Phi^3(U_{\rm s}) \rangle S_{\rm ZP, shs}(q \ ; R_{\rm s,av}, \phi_{\rm s}) \tag{A7.49}$$

*S*_{ZP.shs}(*q*)は(A7.19)式で与えられる.

有限な大きさのクラスター内に存在するHSからの散乱強度 $I_{c}(q)$ を $I_{HS/cluster}(q)$ と定

図A7.7 階層構造全体の散乱能密度の空間分布 p_{hierarchy}(r)は、クラスター内の散乱能密度の 空間分布 p_c(r)とクラスターの質量中心のマスフラクタル的空間分布 p_{center,MF}(r)と のたたみ込みで与えられる.系はクラスターを構成する微粒子 NP(レベル1)、ク ラスターを下限打切り構造(基本構造単位)(レベル2)とする階層構造(レベル3)か ら構成されている.

義すると、これは(A7.43)式の $S_{ZP}(q; R_{s,av}, \phi_s) \varepsilon$ (A7.15)式の $S_{ZP,hs}(q; R_{s,av}, \phi_s)$ で置き換 えればよい、有限な大きさのクラスター内に存在するSHSに対しては、同様に、 S_{ZP} を $S_{ZP,shs}$ で置き換えればよい、このときの散乱強度 $I_c(q) \varepsilon I_{SHS/cluster}(q)$ と定義する、 $I_{HS/cluster}(q), I_{SHS/cluster}(q)$ は(A7.43)式より次式で与えられる、

$$I_{K/\text{cluster}}(q) = K_6 \{ (2\pi)^3 \rho \langle V_s^2 \Phi^2(U_s) \rangle \langle V_c^2 \Phi^2(U_c) \rangle + \langle V_s^2 \Phi^2(U_s) \rangle [S_{ZP,k}(q; R_{s,av}, \phi_s) * \langle V_c^2 \Phi^2(U_c) \rangle] \}$$
(A7.50)

ここで、 $K \acute{n}$ SHSのときにはkはshs、 $K \acute{n}$ HSのときにはkはhsとする、

F. クラスターを基本構造単位にもつマスフラクタル構造からの散乱

図A7.7に模式的に示したように有限数の粒子を含んだクラスターがさらにマスフ ラクタル構造を形成する系についての散乱を考えよう.この系は、一種の階層構造を 形成する.すなわち、ナノ微粒子(NP)が階層レベル1の構造となり、これが階層レ ベル2のクラスター構造を形成し、さらにこのクラスター構造が階層レベル3のマス フラクタル構造を形成し、このマスフラクタル構造が系全体を構成すると考えられる. この場合、粒子そのものでなくてクラスター構造がマスフラクタル構造を構築する基 本構造単位(下限打切り構造)となる.いま、マスフラクタル構造全体の散乱能密度の 空間分布を*p*_{hierarchy}(**r**)とすると、これは、図A7.7に示すようにクラスター内の散乱能 密度の空間分布*p*_c(**r**)とマスフラクタルを構成するクラスターの質量中心の空間分布 *p*_{center,MF}(**r**)とのたたみ込みで与えられる.いま、*p*_{center,MF}(**r**)がマスフラクタル構造の 特性を満たすので、*p*_{hierarchy}(**r**)は次式で与えられる.

$$p_{\text{hierarchy}}(\mathbf{r}) = \rho_{\text{center,MF}}(\mathbf{r}) * p_{\text{c}}(\mathbf{r})$$
(A7.51)

上式のそれぞれの関数の自己相関関数は、次式を満足する.

付 録

$$\hat{\tilde{\rho}}_{\text{hierarchy}}(\mathbf{r}) = \hat{\tilde{\rho}}_{\text{center,MF}}(\mathbf{r}) * \hat{\tilde{\rho}}_{\text{c}}(\mathbf{r})$$
(A7.52)

上式をFourier変換し、 $\overset{2}{\rho}_{center,MF}(\mathbf{q})$ がマスフラクタル構造の構造因子 $S_{MF}(\mathbf{q})$ に等しいこと、球対称系に対しては $\mathbf{q} \in q$ で置き換えられることに留意すると、次式を得る.

$$\tilde{\tilde{p}}_{\text{hierarchy}}(q) = S_{\text{MF}}(q) \tilde{\tilde{p}}_{c}(q)$$
(A7.53)

したがって、この階層構造全体の散乱強度分布 $I_{net}(q)$ は

$$I_{\text{net}}(q) = S_{\text{MF}}(q) I_{K/\text{cluster}}(q) \quad (K = \text{HS} \ddagger \text{tis} \text{SHS})$$
(A7.54)

ここで、 $S_{MF}(q)$ は(13.12)式で、 $I_{K/cluster}(q)$ は(A7.50)式で与えられる. (13.12)式において特性長さ r_0 は $r_0 = R_c$ で与えられる.以下の付録7.3から7.5ではこれまでに得た散乱式を図A7.4の実験散乱曲線の解析に適用し、この系の物性論的解析を展開する.

付録7.3 ■ 無限空間, 拘束空間に分散した剛体球に基づく解析

図A7.8は、図A7.4に示した実験結果をさまざまなモデルに基づいて解析した結果 を示す.まず最初に領域Iの散乱について検討する.(A7.50)式で与えられる $I_{\text{HS/cluster}}(q)$ において、 $q \acute{m} q \rightarrow \infty$ に漸近すると、 $S_{\text{ZP,hs}}(q; R_{\text{s,av}}, \phi_{\text{s}}) \rightarrow 1$ 、したがって、(A7.50)式右 辺第2項の[]内に示したたたみ込みはqに依存しない定数となる.また $q \rightarrow \infty$ では $\langle V_{\text{s}}^2 \Phi^2(U_{\text{s}}) \rangle \gg \langle V_{\text{s}}^2 \Phi^2(U_{\text{s}}) \rangle \langle V_{\text{c}}^2 \Phi^2(U_{\text{s}}) \rangle$ であるから

図A7.8 (a) 実験散乱曲線 *I*_{exp}(*q*) (丸印シンボル,曲線(1))の*I*_{INP}(*q*) [曲線(2)], *I*_{HS/inf}(*q*) [曲線(3)], および*I*_{HS/cluster}(*q*) [曲線(4)] に基づく最適化. (b) *I*_{exp}(*q*) と*I*_{HS/cluster}(*q*) の 0.5<*q*/nm⁻¹<1.2 における逸脱を示すための(a)の拡大図².

$$I_{\text{HS/cluster}}(q) \rightarrow (\text{const.}) \langle V_s^2 \Phi^2(U_s) \rangle \propto I_{\text{INP}}(q)$$
 (A7.55)

ここで、 $I_{\text{INP}}(q)$ は個々のナノ粒子からの独立散乱強度である. 同様に、 $q \rightarrow \infty$ のとき (A7.15)式で与えられる $S_{\text{ZP,hs}}(q) \rightarrow 1$ となるので、 $I_{\text{HS/inf}}(q) \propto I_{\text{INP}}(q)$ となる[(A7.48)式]. ここで $I_{\text{INP}}(q)$ は、X線に対しては

$$I_{\rm INP}(q) = I_{\rm e} \Delta \rho_{\rm e}^{\ 2} \rho \langle V_{\rm s}^{\ 2} \Phi^2(U_{\rm s}) \rangle \tag{A7.56}$$

実際に $I_{exp}(q)$ は、 $q \ge 1.5 \text{ nm}^{-1}$ で $I_{INP}(q)$ (曲線2)と $q \ge 1.3 \text{ nm}^{-1}$ 以上で $I_{HS/inf}(q)$ (曲線3) と良く一致する[図A7.8 (a)]. この実験曲線(1)と理論曲線(2)または(3)との最適化 により $\langle R_s \rangle = 1.8 \text{ nm}$ および多分散パラメータ $P_p = 0.16$ が高い精度で評価できた(後述, 表A7.1参照). $q \cong 3 \text{ nm}^{-1}$ の散乱極大は,球の形状因子の1次極大である(9.2.2項参照).

領域Iの内部で $q < 1.5 \text{ nm}^{-1}$ での $I_{\text{INP}}(q) \ge I_{\text{exp}}(q) \ge 0$ 不一致, すなわち $I_{\text{exp}}(q) < I_{\text{INP}}(q)$, は、実験系の粒子間には粒子間相互作用が実在し、各粒子からの散乱波は互いに干渉 し合い非建設的な干渉(destructive interparticle interference)効果をもたらすことに起 因する. 粒子間に剛体球斥力ポテンシャル[(A7.12)式], PY方程式(A7.11)式を導入 して得られた $I_{\text{HS/inf}}(q)$ [曲線(3)]は、 $I_{\text{INP}}(q)$ に比べて、きわめて良好に $I_{\text{exp}}(q)$ と一致す るが、非建設的干渉効果が強すぎる結果 $I_{\text{HS/inf}}(q) < I_{\text{exp}}(q)$ となる.ここで $I_{\text{HS/inf}}(q)$ は 一連のパラメータの組み合わせ($\langle R_s \rangle = 1.8 \text{ nm}, P_n = 0.16$)を用いて数値計算した結果で ある. しかしながら, $q \leq 1.3 \text{ nm}^{-1}$ では, qの減少にともない $I_{\text{exp}}(q) \ge I_{\text{HS/inf}}(q)$ との相 違は増大する. $I_{\text{HS/inf}}(q)$ は, $q \approx 1.3 \text{ nm}^{-1}$ で極大値を示し, qの減少とともに減少する. これは後述するように、 $S_{HS/inf}(q)$ は、 $q \cong q_{max} \cong 1.3 \text{ nm}$ で極大値をもち、 $q \cap q_{max}$ から の減少にともない減少するからである.この大きな逸脱を解消する一因として図A7.5 (a)と(d)に示したように、ハードコア斥力相互作用を有する球がクラスター内に閉じ 込められる効果を考慮した.そして、クラスターからの独立散乱強度 I_{HS/cluster}(q) [曲 線(4)]と*I*_{exp}(q)とを比較した. クラスターからの独立散乱とはクラスター間の散乱波 の干渉効果を無視できる場合のクラスターからの散乱を意味する. クラスターの導入 により、領域IIにおける実験散乱曲線(1)と理論曲線(4)との一致は著しく改良された。 しかしながら曲線(1)と(4)には、(1)主として領域III(より詳細にはq<0.5 nm⁻¹のq 領域)および(2)領域IとIIのクロスオーバー領域(より詳細には0.7<q/nm⁻¹<1.3)に 逸脱が見られる.図A7.8(b)においては、縦軸、横軸のスケールを拡大することにより、 この逸脱をより顕著に示した. 前者(1)の逸脱に関しては, 各クラスターからの散乱 が独立散乱するという仮定の破綻を意味し、クラスターの高次構造、例えばマスフラ クタル構造の存在が示唆される。また後者(2)の破綻は、粒子間相互作用がハードコ ア斥力相互作用のみでは記述できないことを示唆する. (2)に示した領域の散乱は粒 子間相互作用の本質を究める上で物性論的にきわめて重要であると考えられる。

付録7.4 ■ 無限空間, 拘束空間に分散した粘着性剛体球に基づく解析

図A7.9は、上記と同一の実験曲線(1)を*I*_{SHS/inf}(*q*)[曲線(2)]および*I*_{SHS/cluster}(*q*)[曲 線(3) 〕を用いて最適化した結果を示す。最適化に用いたパラメータは、後述の表A7.1 にまとめて示した。SHS引力相互作用ポテンシャルu(r)(A7.17式)とPY方程式 (A7.11) 式に基づいて計算した I_{SHS/inf}(q)は、HS 斥力相互作用(A7.12式)とPY 方程式 (A7.11)式に基づき計算した I_{HS/mf}(q)に比べて、実験散乱曲線を次の点でよりよく説 明することが判明した. (1)クロスオーバー領域[0.6<q/nm⁻¹<1.3]でのI_{SHS/inf}(q)と $I_{exp}(q)$ との逸脱は、 $I_{HS/inf}(q)$ と $I_{exp}(q)$ との逸脱に比してより小さくなった。特に領域I では、 $I_{\text{SHS/inf}}(q) \ge I_{\text{exp}}(q) \ge 0$ 完全な一致が見られる. (2) $I_{\text{SHS/inf}}(q) \ge I_{\text{HS/inf}}(q)$ に比べて、 領域IIとIIIにおいても*I*_{exp}(q)との逸脱を小さくした.これらの結果は、この系の粒 子間相互作用において引力相互作用の重要性を明らかにした. $I_{SHS/inf}(q) \ge I_{HS/inf}(q) \ge I_{HS/inf}(q)$ の相違は両者の構造因子, すなわち S_{SHS/inf}(*q*)と S_{HS/inf}(*q*)との相違に起因する(後述, 図A7.11参照).SHSが拘束空間に閉じ込められるというクラスターモデルに基づい て得られた $I_{\text{SHS/cluster}}(q)$ [曲線(3)]は、より広いq範囲($q > 0.5 \text{ nm}^{-1}$)で $I_{\text{exp}}(q)$ と完全に 一致した. $q < 0.5 \text{ nm}^{-1}$ の小q領域での $I_{exp}(q) \ge I_{SHS/cluster}(q)$ の相違はクラスターがよ り高次な構造を構築すること、すなわちクラスター間の散乱波の干渉が重要であるこ とを示す.

図A7.9 実験曲線(1)と $I_{SHS/inf}(q)$ [曲線(2)], $I_{SHS/cluster}(q)$ [曲線(3)]との比較²⁾.
付録7.5 ■ 粒子間相互作用が構造因子に及ぼす効果,引力相互作用 に由来する粒子の「動的」凝集体

図A7.10 (b) は高分子と(Pd)_nとの枯渇相互作用(depletion interaction)に由来する (Pd)_n間の実効的引力相互作用を模式的に示す.2個の(Pd)_n間の狭い空間に存在する 高分子鎖P₁は,形態エントロピーの損失による自由エネルギーの増大をともなう. 高分子/粒子の引力相互作用が弱いときには、このエントロピーの損失が、高分子/ 粒子間の引力相互作用によるエネルギーの利得を上回ることになる.このエントロ

図A7.10 ナノ微粒子間の実効相互作用は、粒子--粒子(a)、粒子--高分子[(b)および(c)]および 高分子--高分子間(d)の引力相互作用に依存する. 高分子--粒子の引力相互作用は、(c) →(d)→(b)の順に弱くなる. ナノ微粒子間に働く実効相互作用は、(a),(b),(c)にお いては引力、(d)においては斥力となる.

図A7.11 $S_{\text{SHS/inf}}(q)$ の引力相互作用ポテンシャル $-u_0/k_BT$ 依存性.他のパラメータ R_s, ϕ_s, ε は 図中に示した値に固定した. $-u_0/k_BT=4 \times 10^{-4} \text{ tu}_0/k_BT=0$ の $S_{\text{HS/inf}}(q)$ にほとん ど等しい. ϕ_s は球状粒子の体積分率.

ピー損失を解消するために、高分子 P_1 は粒子間の狭い拘束空間から自由空間に移動 し高分子鎖 P_2 となる. その結果(Pd)_n間には実効的な引力が働くことになる. またこ れにより高分子鎖の形態エントロピーの損失は解消される. (Pd)_nと高分子鎖との引 力相互作用が強い場合には、図A7.10 (c) に模式的に示したように高分子鎖による (Pd)_n間の「物理的架橋(bridging)」が起こる. この架橋も(Pd)_n間に実効的な引力相 互作用を与える.

図A7.10 (d) は(Pd) "と高分子鎖との引力相互作用により(Pd) "の表面に吸着した高 分子鎖からなる層が存在するとき,吸着高分子層をもった2つの(Pd) "が接近したと きに,吸着層高分子の変形にともなうエントロピー損失をともなう.このエントロピー 損失は2つの(Pd) "間の距離を増加することにより解消される.すなわち,2つの (Pd) "の吸着高分子鎖間のエントロピー反発(entropic repulsion)が(Pd) "間に実効的斥 力相互作用をもたらす. (c)から(d)への変化は,高分子と粒子の引力相互作用が弱め られたときに起こるものと考えられる.

以上の議論に基づき,高分子媒体相を一様な場として粗視化したとき,(Pd)_n粒子間の実効的引力相互作用が粒子間の実効的斥力相互作用を上回るときには,図A7.5 (b)に示したu(r)を粒子間の実効的相互作用ポテンシャルとして考えることができるであろう.図A7.11はパラメータの組み合わせ($R_{s}, \phi_{s}, \varepsilon$)のそれぞれの値を一定にしたときの粒子の中心の空間分布に関する構造因子 $S_{SHS/inf}(q)$ の引力相互作用エネルギー $-u_0/k_{B}T$ 依存性を示す.曲線1は引力相互作用エネルギーが事実上ゼロの場合,

図A7.12 引力相互作用に誘起された(Pd)_nの動的会合体(a)および(Pd)_nを含んだ静的クラス ター構造. 矢印(1)と(2)はそれぞれ会合, 脱会合を模式的に示す.

すなわち図A7.5(a)のハードコア斥力相互作用のみをもつ剛体球の構造因子 $S_{HS/inf}(q)$ に相当する. Suscinf(q)は、q=0で極小値をとり、qの増加とともに増加し極大、極小 値をもち減衰振動をしながら、やがて1に漸近する.したがって、図A7.8(a)の曲線3 $のq \leq 1.3 \, \text{nm}^{-1} \sigma q$ 範囲における非建設的粒子間干渉効果は、このq範囲における $q \sigma$ i減小にともなう $S_{\text{Hs/inf}}(q)$ の減小によることがわかる.引力ポテンシャル $-u_0/k_{\text{B}}T$ がき わめて小である $S_{\text{SHS/inf}}(q)$ は $S_{\text{HS/inf}}(q)$ とほとんど等しい(曲線2参照). $-u_0/k_{\text{B}}T=1.0$ (曲線4)では、小q範囲における $S_{SHS/inf}(q)$ の極小値を与える $q(\equiv q_{min})$ はq=0から $q_{\min} \simeq 0.7 \text{ nm}^{-1}$ にシフトする.引力ポテンシャル $-u_0/k_BT$ のさらなる増大とともに q_{\min} および極小値は矢印(1)で示したような移行を示す. すなわち. q_{\min} は大q方向へ シフトし,極小値はより小さくなる. また, q>1 nm⁻¹以上での極大値は矢印(3)の ように変化する. すなわち, 極大値は大きくなり, 極大値を与える q(=q_{max})も大き くなる. qmaxの増大は平均粒子間距離の減少, 粒子の局所密度の増大を示す. 他方 q=0での構造因子の強度 $S_{SHS/inf}(q=0)$ は矢印(2)に示したように増大する. これより 引力相互作用の増大にともない粒子の数密度のゆらぎが増大することがわかる。すな わち, 粒子分散系の等温圧縮率の増大を示唆する[(A4.21)式参照]. - u₀/k_BTをさら に増大すると $S_{SHS/inf}(q=0)$ は発散し系は熱力学的に不安定となり、スピノーダル分解 による相分離を起こす. $q < 0.8 \, \mathrm{nm}^{-1}$ における小q範囲の曲線4から8は、1相状態に ある (Pd) " が「**動的会合体**(dynamic aggregates)」を形成することおよび引力相互作 用の増大とともにより大きな動的会合体が形成されることを示唆する、図A7.12(a) は引力相互作用により誘起された動的会合体を模式的に示す. ここに記した動的会合 体とは、粒子の会合体への会合(association) [図A7.12 (a)の矢印(1)参照]と粒子の会 合体からの脱会合(dissociation) [図A7.12 (a)の矢印(2)]とが動的平衡(dynamic equilibrium)下にある会合体を意味する.

図A7.13は、パラメータの組み合わせ(R_s , u_0/k_BT , ε)のそれぞれの値を一定にした

図A7.13 $S_{\text{SHS/inf}}(q)$ の粒子の体積分率 ϕ_s 依存性.他のパラメータ R_{s} , $-u_0/k_BT$, ε は図中に示した値に固定した.

ときの $S_{\text{SHS/inf}}(q)$ の球状粒子の体積分率 ϕ_s 依存性を示す.引力相互作用 $-u_0/k_BT$ の増加と同様に、 ϕ_s の増加も $S_{\text{SHS/inf}}(q=q_{\text{max}})$ の増大、 $S_{\text{SHS/inf}}(q=q_{\text{min}})$ の減小をもたらす. ϕ_s の増大にともない $S_{\text{SHS/inf}}(q=0)$ の増大、すなわち粒子の数密度のゆらぎの増大、より大きな動的会合体の形成が示唆される. ϕ_s のさらなる増大は、系に熱力学的不安定性をもたらし相分離を誘発する.熱力学的不安定点(スピノーダル点、spinodal point)での $\phi_s \varepsilon \phi_{ssp}$ とすると $\phi_s \rightarrow \phi_{ssp}$ に近づくと $S_{\text{SHS/inf}}(q=0)$ は発散する.

図A7.14は、パラメータの組の値を $R_s = 2.0 \text{ nm}$, $\phi_s = 0.3$, $\varepsilon = 0.1$ に設定したときの $S_{\text{SHS/inf}}(qR_s)$ の u_0/k_BT 依存性(a),対応する各構造因子のGuinierプロット(b),Guinier プロットから得られた特性パラメータ $R_{g,a}$, n_a , $S_{\text{SHS/inf}}(q=0)$ の引力相互作用エネルギー $(-u_0/k_BT)$ 依存性(c)を示す.図A7.14 (a)に示したように構造因子の換算プロット $S_{\text{SHS/inf}}(qR_s)$ vs qR_s は、 $q_{Rs} \ge 0.8$ 以上の大q領域では引力相互作用の大きさに依存しな い関数となる.すなわち、このq領域では $S_{\text{SHS/inf}}(q)$ は $R_s \ge \phi_s$ にのみ依存し、この範 囲の $u_0(2.0 \le -u_0/k_BT \le 3.5)$ に対しては球状粒子の局所充填はあまり u_0 に依存しない ことを意味する.小q領域における $S_{\text{SHS/inf}}(q)$ のGuinierプロット[図A7.14 (b)]

$$\ln S_{\rm SHS/inf}(q) = \ln S_{\rm SHS/inf}(q=0) - (R_{\rm g,a}^2/3)q^2$$
(A7.57)

の $q^2 = 0$ の縦切片の値より求めた $S_{\text{SHS/inf}}(q=0)$ および同プロットの傾斜より求めた会 合体の回転半径 R_{ga} 、および会合体中の粒子数 $n_a \varepsilon(c)$ および(d)に示した. n_a は会合 体が半径 R_a の球と仮定し、会合体中での球の体積分率 ϕ_a が最密充填の0.74と仮定し て、次式に従い計算した.

$$R_{ga}^{2} = (3/5)R_{a}^{2}, \quad n_{a} = \phi_{a}(R_{a}/R_{s})^{3}$$
 (A7.58)

 図A7.14 (a) S_{SHS/inf}(qR_s)のu₀/k_BT依存性, (b) 図(a)の構造因子(1)~(4)に対応するGuinierプロット (1)~(4), (c)動的会合体の回転半径R_{g,a}, S_{SHS/inf}(q=0), 会合体を球と仮定し会合体内の球の 体積分率を0.74としたときの会合体中の平均粒子数n_aおよび(d)散乱曲線(1)~(4)に関連し たパラメータの値を示す表.

図A7.14 (c)から明らかなように引力相互作用が増加すると $R_{g,a}$, n_a , $S_{SHS/inf}(q=0)$ は増大する. $-u_0/k_BT$ がさらに増加すると、これらの値は発散する(スピノーダル点).

付録7.6 ■ クラスターが構築するマスフラクタル構造の散乱

図A7.15 (a)は、引力相互作用を有する球状粒子からなる球状の形状をもつクラス ターが、より高次な構造としてマスフラクタル構造を形成する場合の理論散乱強度分 布 $I_{net}(q)$ と実験散乱曲線 $I_{exp}(q)$ との比較を示す。参考曲線としてマスフラクタルの構 造因子 $S_{MF}(q)$ [(13.12)式]のみならず、すでに議論した $I_{SHS/inf}(q)$ および $I_{SHS/cluster}(q)$ を も本図に含めた、 $q < q^*$ での顕著な $I_{exp}(q) \ge I_{SHS/cluster}(q)$ との逸脱は、個々のクラスター が孤立して存在するのではなく高次構造としてマスフラクタル構造を構築することに 起因すると考え、以下の解析を試みた、このマスフラクタル構造全体が他のマスフラ クタル構造体と互いに独立な散乱をするときの個々のマスフラクタル構造体からの散 乱強度分布を $I_{net}(q)$ とすると、 $I_{net}(q)$ は(A7.50)、(A7.54)式より次式で与えられる.

図A7.15 (a) ナノ粒子からなるクラスターの散乱 $I_{SHS/duster}$ とクラスターが構築するマス フラクタル構造による散乱曲線 $I_{net}(q)$ とマスフラクタル構造因子 $S_{MF}(q)$. $I_{net}(q)$ と 実験散乱曲線 $I_{esp}(q)(シンボル)$ とのほぼ完全な一致は、(b)に示す階層構造、すな わちナノ微粒子(レベル1)、ナノ微粒子が構築するクラスター(レベル2)、クラス ターが構築するマスフラクタル構造(レベル3)の存在を明らかにした²⁾.

表A7.1 図A7.4の散乱曲線の解析によって得られたナノ微粒子の分散構造を規定するパラメータ.

	1次 (階層構造	構造 造レベル1)		(階層	3次構造 (階層構造レベル3)				
<i>T</i> _r (°C)	$\langle R_{\rm s} \rangle / \rm{nm}$	$P_{\rm p}$	$\langle R_{\rm c} \rangle / {\rm nm}$	$P_{\rm c}$	$\phi_{ m p}$	∆/nm	u_0	$D_{\rm M}$	ξ/nm
100	1.8 ± 0.012	0.16 ± 0.023	4.2 ± 0.21	0.01 ± 0.011	0.491 ± 0.021	0.21	$-2.2k_{\rm B}T$	2.3	200 ± 72

$$I_{\rm net}(q) = S_{\rm MF}(q) I_{\rm SHS/cluster}(q) \tag{A7.59}$$

 $S_{\rm MF}(q)$ は(13.12)式で与えられ、下限打切り長さ r_0 は、この場合 R_c とおくことができる. マスフラクタル次元 $D_{\rm M}$ を2.3にとり、 $\langle R_c \rangle = 4.2 \pm 0.2$ nmとすると、 $S_{\rm MF}(q)$ は、 $q < q^*$ で $q^{-2.3}$ に、 $q > q^*$ で q^0 に漸近する. この $S_{\rm MF}(q)$ と表A7.1に示したパラメータを用いて数値計算して得られた $I_{\rm SHS/cluster}(q)$ とを用いて計算された $I_{\rm net}(q)$ は実験曲線 $I_{\rm exp}(q)$ ときわめて良好な一致を示した.

図A7.15 (b)はナノ微粒子が構築する階層構造を示す.1次構造であるナノ微粒子は 階層レベル1の構造,微粒子間の引力相互作用により形成されたSHS/クラスターは 2次構造,すなわち階層レベル2の構造,クラスターが構築するマスフラクタル構造 は3次構造,すなわち階層レベル3の構造となる.それぞれの階層レベルの構造はそ れぞれI,II,IIIのq領域の散乱(図A7.4および図A7.15)に影響を与える.すなわち,領 域I,II,IIIの散乱は,それぞれ主としてナノ微粒子(NP),マスフラクタル構造を構築 するSHS/クラスターおよびマスフラクタル構造に起因する.各階層レベルの構造を 特徴づけるパラメータを表A7.1にまとめて示す.

実験曲線を同定する特性パラメータの数は多いが,それぞれのパラメータまたはパ ラメータの組は相異なる階層レベルを規定するパラメータであり,選択的に異なった q領域(I, II, III)の散乱曲線に影響を与える.また,2次構造を規定するパラメータ自 体も数多く存在するが,それらは領域II内部の異なったq領域に異なった効果をもた らす.これらの効果はパラメータの同定の信頼性を高める.

クラスターの平均粒径 $\langle R_c \rangle$, クラスター内でのナノ 微粒子の数 N_s は, $N_s = \phi_s \langle R_c^3 \rangle / \langle R_s^3 \rangle \cong 6$. 得られた ϕ_s は液体金属中での金属の体積分率に近い(11.6節参照). マスフラクタル次元 D_M = 2.3は, クラスターークラスター間の拡散律則会合体形成(拡散律 則凝集, diffusion-limited aggregation)のマスフラクタル次元¹¹⁾ 2.5に近い. 図A7.15 (a) において $I_{exp}(q)$ はqの減小にともない増加しているが, qが ξ^{-1} に近づくと増加率が小さくなりゼロに近づくはずである. $I_{exp}(q)$ にはこの効果が顕著に観察されていないので, ξ の評価の信頼度は低い. この系の ξ の正確な評価のためにはUSAXS, USANSにより, より小さなqの散乱強度を精度良く測定することが必要である.

🛄 付録7ノート

ノートA7.1 ■ 十分大きな球状の照射体積に対する(A7.5)式の証明

球状照射体積の半径をRirとすると、(9.4)式より

$$T(q) = \int_{0}^{R_{\rm tr}} \frac{\sin qr}{qr} 4\pi r^{2} dr = V_{\rm ir} \Phi(qR_{\rm ir})$$

$$\Phi(U) = (3/U^{3})(\sin U - U\cos U), \quad U \equiv qR_{\rm ir}$$

$$V_{\rm ir} = (4\pi/3)R_{\rm ir}^{-3}$$

(NA7.1.1)

(NA7.1.1)式の第1式において $R_{ir} \rightarrow \infty$ のとき、 $V_{ir} \rightarrow \infty$ 、そして $\Phi(qR_{ir})$ は $q \rightarrow 0$ のときのみ1 で、 $q \neq 0$ のときゼロとなるのでDiracのデルタ関数で与えられる.

$$\lim_{R_{\nu}\to\infty} T(q) = \lim_{R_{\nu}\to\infty} V_{ir} \Phi(qR_{ir}) = C_{s}\delta(q)$$
 (NA7.1.2)

ここで、*C*_sは比例定数であり、以下のように求められる. (NA7.1.2)の両辺を全q空間で積分すると、

$$C_{\rm s} = \lim_{R_{\rm ir} \to \infty} (4\pi/3) R_{\rm ir}^{-3} \int_0^\infty \Phi(qR_{\rm ir}) 4\pi q^2 dq \qquad ({\rm NA7.1.3})$$

上式においてデルタ関数の満足する条件

$$\int_0^\infty \delta(q) 4\pi q^2 dq = 1 \tag{NA7.1.4}$$

を用いた. (NA7.1.3)式において, $qR_{ir} \equiv t$ とすると.

$$C_{\rm s} = (4\pi)^2 \left\{ \int_0^\infty \frac{\sin t}{t} dt - \int_0^\infty \cos t \, dt \right\} = (2\pi)^3 \tag{NA7.1.5}$$

ここで、右辺第1項の積分値はπ/2、第2項の積分値はゼロであることに留意する. (NA7.1.2), (NA7.1.5)式より、(A7.5)式が得られる.

ノートA7.2 ■ 円柱状照射体積に対して T(q) = (2π)³δ(q) [(A7.7)式]であることの 証明

図NA7.2のように入射ビームの進行方向をx軸にとり, 照射体積が半径 R_{ir} , 長さ L_{ir} の円 柱で, 円柱軸がx軸と同一であるものとする. この場合

$$T(\mathbf{q}) = \int \exp(-i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r} \qquad (NA7.2.1)$$

$$\mathbf{q} = q_x \mathbf{i} + q_y \mathbf{j} + q_z \mathbf{k} \tag{NA7.2.2}$$

ここで, **i**, **j**, **k**はそれぞれ*x*, *y*, *z*軸方向の単位ベクトルである.**r**を下図のように円柱座標を 用いて表せば,

$$\mathbf{r} = x\mathbf{i} + (\rho \sin \beta)\mathbf{j} + (\rho \cos \beta)\mathbf{k}$$
(NA7.2.3)

(NA7.2.1)~(NA7.2.3)式より

$$T(\mathbf{q}) = T_x(q_x)T_{\perp}(q_{\perp})$$

$$T_x(q_x) \equiv \int_{-L_k/2}^{L_k/2} \exp(-\mathrm{i}q_x x) dx$$

$$T_{\perp}(q_{\perp}) \equiv \int_{0}^{R_x} d\rho \rho \int_{0}^{2\pi} d\beta \exp[-\mathrm{i}\rho(q_y \sin\beta + q_z \cos\beta)]$$

(NA7.2.4)

上式の第3式の β に関する積分を I_{β} , qのx軸に垂直成分を q_{\perp} として、 q_{y} , q_{z} を q_{\perp} および μ を 用いて表すと

図NA7.2

$$\begin{aligned} q_{\perp} &= (q_{y}^{2} + q_{z}^{2})^{1/2} \\ q_{y} &= q_{\perp} \sin \mu, \quad q_{z} = q_{\perp} \cos \mu \end{aligned} \tag{NA7.2.5}$$

*I*_βは次式で与えられる.

$$\begin{split} I_{\beta} &= \int_{0}^{2\pi} \exp[-i\rho q_{\perp} \cos w] dw, \quad w \equiv \beta - \mu \\ &= \int_{0}^{2\pi} [\cos(\rho q_{\perp} \cos w) - i\sin(\rho q_{\perp} \cos w)] dw \end{split} \tag{NA7.2.6}$$

上式にJacobiの展開[第10章ノート10.9(N10.9.5)式参照]を用い積分すると

$$I_{\beta} = 2\pi J_0(\rho q_{\perp}) \tag{NA7.2.7}$$

上式を(NA7.2.4)式の第3式に代入し、 $\rho q_{\perp} \equiv t \varepsilon$ 用いて $\rho h c t c z 数変換 t a と$

$$T_{\perp}(q_{\perp}) = \left[2\pi/(q_{\perp})^2 \right] \int_{0}^{q_{\perp}R_{\rm tr}} J_{0}(z)z \, dz$$

= $2\pi R_{\rm ir}^2 \frac{J_{1}(q_{\perp}R_{\rm ir})}{q_{\perp}R_{\rm tr}}$ (NA7.2.8)

(NA7.2.4)式の第2式の積分をすると,

$$T_{x}(q_{x}) = L_{\rm ir} \frac{\sin(q_{x}L_{\rm ir}/2)}{q_{x}L_{\rm ir}/2}$$
(NA7.2.9)

(NA7.2.4)の第1式, (NA7.2.8), (NA7.2.9)式より

$$T(\mathbf{q}) = 2V_{\rm ir} \frac{\sin(q_x L_{\rm ir}/2)}{q_x L_{\rm ir}/2} \frac{J_1(q_\perp R_{\rm ir})}{q_\perp R_{\rm ir}}$$
(NA7.2.10)
$$V_{\rm ir} = \pi R_{\rm ir}^2 L_{\rm ir}$$

 $R_{ir}, L_{ir} \rightarrow \infty$ のとき、 $V_{ir} \rightarrow \infty$ であり、 $T(\mathbf{q}) \lg q_x = q_{\perp} \neq 0$ のときゼロ、 $q_x = q_{\perp} = 0$ のとき発散するので $T(\mathbf{q}) \lg Dirac のデルタ関数\delta(\mathbf{q})$ で与えられる.

$$\lim_{R_k, L_k \to \infty} T(\mathbf{q}) = C_c \delta(\mathbf{q}) \tag{NA7.2.11}$$

ここで、C。は比例定数であり、以下のように求められる.

$$\int \delta(\mathbf{q}) d\mathbf{q} = \int dq_x \int dq_\perp 2\pi q_\perp \delta(q_x, q_\perp) = 1$$
 (NA7.2.12)

(NA7.2.10) ~ (NA7.2.12) 式と変数変換 $q_x L_{ir}/2 \equiv w, q_{\perp} R_{ir} \equiv z \in \mathbb{R}$ いると、

$$C_{\rm c} = \lim_{R_{\rm w}, L_{\rm x} \to \infty} 16\pi^2 \int_0^\infty \frac{\sin w}{w} \, dw \int_0^\infty J_1(z) dz$$

$$= 8\pi^3$$
(NA7.2.13)

(NA7.2.11), (NA7.2.13) 式より(A7.7) 式が証明できた. (NA7.2.13) 式において

付 録

$$\int_{0}^{\infty} [(\sin w)/w] dw = \pi/2, \quad \int_{0}^{\infty} J_{1}(z) dz = 1$$
 (NA7.2.14)

を用いた.

ノート7.3 ■入射ビームが直方体状の照射体積の一辺に平行であるときに(A7.7) 式が成り立つことの証明

(NA7.2.1)式において、直方体の各辺の長さをL_x, L_y, L_zとすると

$$\begin{split} T(\mathbf{q}) = & \int_{-L_{x/2}}^{L_{x/2}} \exp(-\mathrm{i}\,q_x x) dx \int_{-L_{y/2}}^{L_{y/2}} \exp(-\mathrm{i}\,q_y y) dy \int_{-L_{z/2}}^{L_{z/2}} \exp(-\mathrm{i}\,q_z z) dz \\ = & V_{\mathrm{ir}} \frac{\sin(q_x L_x/2)}{q_x L_x/2} \frac{\sin(q_y L_y/2)}{q_y L_y/2} \frac{\sin(q_z L_z/2)}{q_z L_z/2} \end{split}$$
(NA7.3.1)

ここで、 $V_{ir} = L_x L_y L_z$ である. $L_x, L_y, L_z \rightarrow \infty$ のとき、 $V_{ir} \rightarrow \infty$ で $T(\mathbf{q})$ は $\mathbf{q} \neq 0$ ではゼロ、 $\mathbf{q} = 0$ のとき発散するのでDiracのデルタ関数で与えられる.

$$\lim_{L_x,L_y,L_x\to\infty} T(\mathbf{q}) = C_1 \delta(\mathbf{q}) \tag{NA7.3.2}$$

ここで、C₁は比例定数であり、以下のように求められる.

$$\int \delta(\mathbf{q}) d\mathbf{q} = \int \delta(\mathbf{q}) dq_x dq_y dq_z = 1$$
 (NA7.3.3)

(NA7.3.1)~(NA7.3.3)式より

$$C_{1} = \prod_{i=1}^{3} L_{i} \int_{-\infty}^{\infty} \frac{\sin(q_{i}L_{i}/2)}{q_{i}L_{i}/2} dq_{i}$$
(NA7.3.4)

ここで、i=1, 2, 3はそれぞれx, y, zに対応する. $w_i \equiv q_i L_i / 2$ とし、変数 $q_i \in w_i$ に変換し、 w_i に関する積分に対して(NA7.2.14)式の第1式を用いると、

$$C_1 = 8\pi^3$$
 (NA7.3.5)

を得る. (NA7.3.2)~(NA7.3.5)式より, (A7.7)式が得られる.

ノート7.4 ■ (A7.32)式の証明

自己相関関数の定義より、 $\tilde{\tilde{\rho}}_{\text{center,c}}(\mathbf{r}_1)$ は、次式で与えられる。 $\hat{\tilde{\rho}}_{\text{center,c}}^2(\mathbf{r}) = \int \rho_{\text{center,c}}(\mathbf{r}_1) \rho_{\text{center,c}}(\mathbf{r} + \mathbf{r}_1) d\mathbf{r}_1$

上式に(A7.27)式を代入すると,

$$\begin{split} & \sum_{\rho_{\text{center},c}}^{2} (\mathbf{r}) = \int \rho_{\text{center},\infty}(\mathbf{r}_{1}) \rho_{\text{center},\infty}(\mathbf{r}+\mathbf{r}_{1}) \sigma_{\text{c}}(\mathbf{r}_{1}) \sigma_{\text{c}}(\mathbf{r}+\mathbf{r}_{1}) d\mathbf{r}_{1} \\ & = V_{\text{ir}} \left\langle \rho_{\text{center},\infty}(\mathbf{r}_{1}) \rho_{\text{center},\infty}(\mathbf{r}+\mathbf{r}_{1}) \sigma_{\text{c}}(\mathbf{r}_{1}) \sigma_{\text{c}}(\mathbf{r}+\mathbf{r}_{1}) \right\rangle_{\mathbf{r}} \end{split}$$

上式で $\langle X(\mathbf{r}, \mathbf{r}_1) \rangle_{\mathbf{r}}$ は与えられた \mathbf{r} に対してすべての \mathbf{r}_1 について $X(\mathbf{r}, \mathbf{r}_1)$ を照射体積 V_{ir} 内で平均することを意味する. クラスターの形状関数 σ_c とクラスター内での粒子の空間分布は独立事象とすると,

$$\begin{split} \hat{\tilde{\rho}}_{\text{center},c}^{2}(\mathbf{r}) &= V_{\text{ir}} \langle \rho_{\text{center},\infty}(\mathbf{r}_{1}) \rho_{\text{center},\infty}(\mathbf{r}+\mathbf{r}_{1}) \rangle_{\mathbf{r}} \langle \sigma_{c}(\mathbf{r}_{1}) \sigma_{c}(\mathbf{r}+\mathbf{r}_{1}) \rangle_{\mathbf{r}} \\ &= \int \rho_{\text{center},\infty}(\mathbf{r}_{1}) \rho_{\text{center},\infty}(\mathbf{r}+\mathbf{r}_{1}) d\mathbf{r}_{1} \int \sigma_{c}(\mathbf{r}_{1}) \sigma_{c}(\mathbf{r}+\mathbf{r}_{1}) d\mathbf{r}_{1} / V_{\text{ir}} \\ &= \hat{\tilde{\rho}}_{\text{center},\infty}(\mathbf{r}) \hat{\tilde{\sigma}}_{c}(\mathbf{r}) / V_{\text{ir}} \end{split}$$
(NA7.4.1)

(NA7.4.1)式の第3式を(A7.31)式に代入すると(A7.32)式が得られる.

付録7文献

[引用文献]

- Y. Zhao, K. Saijo, M. Takenaka, S. Koizumi, and T. Hashimoto, *Polymer*, **50**, 2696–2705 (2009)
- Y.-C. Lin, C.-Y. Chen, H.-L. Chen, T. Hashimoto, S.-A. Chen and Y.-C. Li, *J. Chem. Phys.*, 142, 214905–1–14 (2015); Y.-C. Lin, C.-Y. Chen, H.-L. Chen, T. Hashimoto, S.-A. Chen, and Y.-C. Li, *J. Chem. Phys.*, 143, 249901–1 (2015)
- 3) F. Zernike and J. A. Prins, Z. Physik, 41, 184–194 (1927)
- 4) L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam, 17, 793–806 (1914)
- 5) J. K. Percus and G. J. Yevick, *Phys. Rev.*, **110**, 1–13 (1958)
- 6) M. S. Wertheim, Phys. Rev. Lett., 10, 321-324 (1963)
- 7) R. J. Baxter, J. Chem. Phys., 49, 2770–2774 (1968)
- 8) S. V. G. Menon, C. Manohar, and K. Srinivasa Rao, J. Chem. Phys., 95, 9186-9190 (1980)
- 9) S. H. Chen and T. L. Lin (K. Skold and D. L. Price eds.), Neutron Scattering, Methods of Experimental Physics Part B, Academic Press, New York (1986), Vol. 23
- a) G. V. Z. Schulz, Z. Phys. Chem., B43, 25–46 (1939)
 b) H. B. Zimm, J. Chem. Phys., 16, 1099–1116 (1948)
- 11) T. A. Witten and L. M. Sander, *Phys. Rev. B*, 27, 5686–5697 (1983)

付録8 複合光散乱像

第15章の図15.6は、小角領域に球晶組織に典型的な散乱(c),(d)を、広角領域に第 18章で述べたような光軸配向角ω₀=55°のフィブリル状散乱(a),(b)を同時に示す複 雑な散乱である.同様の散乱は、ポリテトラフルオロエチレン(図A8.1)、フロピレ ンーエチレンブロック共重合体フィルムにも見られる¹⁾.2種類以上の高次組織に典 型的な散乱が複合しているこの複雑な散乱を「複合光散乱」と定義しよう.この複合 光散乱が起こる理由としては、(1)大きな球晶組織と小さなフィブリル状組織とが独 立して混在した構造に起因すること、(2)構造は球晶のみからなるが、球晶全体が小 角に「球晶散乱」を、球晶の内部構造が広角に「フィブリル状散乱」を与えるという 2つの可能性が考えられる.両者の選択を光散乱のみからなすことは困難であり、他 の手法、特に光学顕微鏡、電子顕微鏡による実空間観察との併用が必要であろう.

図15.6、図A8.1の複合散乱は、明らかに上記(2)の理由によることが顕微鏡観察に より確かめられている¹⁾. その一例として図A8.2に、図A8.1の散乱像を示した同一 フィルムの同一箇所の偏光顕微鏡写真を示す. 顕微鏡像は、偏光方向にマルテーゼク ロスを示す半径約50 µmの2次元球晶が試料空間に充填していることを示す. 観察さ れたマルテーゼクロスをもった球晶はµ=45°の奇数倍に極大を示す四つ葉状のH_v小 角散乱像と一致する. 球晶およびそのマルテーゼクロスが、比較的不鮮明であること は、球晶を形成するフィブリル状組織が大きく、その光学異方性の広がりが球晶その ものの光学異方性の空間一様性に乱れをもたらすためであると考えられる. したがっ

図A8.1 ポリテトラフルオロエチレン(PTFE)フィルムのH_v散乱像¹⁾.フィルムは図15.4,図18.3と同 ーのPTFE分散液を480℃で7時間熱処理した後、30℃/hで室温に徐冷することにより得られ た.散乱は、小角に球晶組織に典型的な四ツ葉状のH_v散乱(a)を、広角にフィブリル状組織に 典型的な十型H_v散乱(b)を同時に示す.すなわち、(a)の散乱像の周辺(広角)領域に(b)の散乱 が、(b)の散乱像の中心(小角領域)に(a)の散乱が観察できる.(a),(b)の散乱像はそれぞれ短 時間、長時間の露光で得られた.

図A8.2 図A8.1のフィルムの偏光顕微鏡写真. 偏光方向は垂直, 水平方向¹⁾.

図A8.3 (a) 球晶の動径ベクトルrに対して光軸aが一定の極角ω₀をもち,一定の光学異方性δ=α₁-α₂ をもった2次元球晶.光軸aのrまわりの回転角γは,球晶の動径フィブリル全体に関して平均 すればランダムである. (b) 球晶の動径フィブリルを構成する光学異方性フィブリル状組織の 中の任意の代表的フィブリル組織F₁, F₂.

て、広角側に現れるフィブリル状散乱は、球晶を構成するラメラあるいはその積層体、 すなわちフィブリル状組織による散乱と考えられる。この種の試料では、ラメラはか なり大きなものとなることが報告されているが^{2~4)}、それらの存在は球晶の半径軸に 関して光軸の回転角γに(その大きさに対応した)不均一をもたらす。

図A8.3 (a) は一様な光学異方性 $\delta = \alpha_1 - \alpha_2$ をもち光軸aが球晶の動径ベクトルrに対して一様な配向角 ω_0 をもち、aのrまわりの回転角 γ が球晶の動径フィブリル全体ではランダムな2次元球晶を模式的に示す.他方(b) は球晶の動径フィブリルの微視的 描像を示す.F₁およびF₂は球晶の動径フィブリルを構成する光学異方性フィブリル 状組織(Fと定義する)の中の任意の代表的組織を抽出して示す.この光学異方性フィ ブリル状組織Fは、第18章図18.5に示したように、組織Fの光軸aは組織内の特定の 面内に存在し、特定の軸(長軸r)と一定の配向角 ω_0 をなす.Fの長軸の配向は平均し て球晶の動径ベクトルrと一致するものとする.Fの特定面は球晶の動径軸のまわり 付 録

に回転角 γ_1, γ_2 をなす.この場合,球晶の動径軸上の任意の散乱要素の光軸aの動径 軸まわりの回転角 γ の動径ベクトルr依存性を $\gamma(\mathbf{r})$ とすると[図A8.3 (a)参照], 微視 的には \mathbf{r} が $\mathbf{F}_1, \mathbf{F}_2$ 内部に存在するときにはそれぞれ γ_1, γ_2 となる.すなわち

$$\gamma(\mathbf{r}) = \begin{cases} \gamma_1 & (\mathbf{r} \in F_1) \\ \gamma_2 & (\mathbf{r} \in F_2) \end{cases}$$
(A8.1)

換言すれば, 球晶全体では, 一様な光学異方性(δ , ω_0)をもった球晶は動径方向に局所 的な光軸配向の乱れ(この場合は回転角の乱れ)を有することになる. すなわち,

$$\gamma_i = \gamma_0 + \Delta \gamma_i(\mathbf{r}) \quad (i = 1, 2) \tag{A8.2}$$

ここで、 γ_0 , $\Delta \gamma_i(\mathbf{r})$ は、それぞれ平均の回転角および γ_0 からの回転角の乱れを意味する. なお、本章の ω_0 および $\gamma(\mathbf{r})$ はそれぞれ19.1節図19.2の β および19.3節の $\omega(\mathbf{r})$ に相当 する. 19.3節のリング球晶との相違は、リング球晶においてはねじれ角 $\omega(\mathbf{r}) = \omega_0 + \Delta \omega(\mathbf{r}) [\Delta \omega(\mathbf{r})$ はねじれ角の平均値 ω_0 からの乱れ]に関して、 ω_0 がrの増加関数である のに反して、 γ_0 はrに依存しない一定値であることである.

上記球晶からのH_v散乱強度I_{Hv}は, 19.2.1項, 19.3節で展開した散乱式を用いると 次式で与えることができる¹⁾.

$$I_{\rm H_{v}} = I_{\rm H_{v}}^{\circ} + \pi^{2} I_{\rm i} K_{7} \delta^{2} \cos^{2} \rho_{2} \left(\frac{1}{8} I_{3} \sin^{4} \omega_{0} \sin^{2} 2\mu + \frac{1}{2} I_{4} \sin^{2} 2\omega_{0} \cos^{2} 2\mu \right)$$
(A8.3)

ここで、I^o_{Hy}は一様な球晶全体(完全球晶)からの散乱強度であり、

$$I_{\rm H_v}^{\circ} = \pi^2 I_{\rm i} K_7 \delta^2 \cos^2 \rho_2 \left(\frac{3\cos^2 \omega_0 - 1}{2}\right)^2 \sin^2 2\mu \left(\frac{R_{\rm s}}{w}\right)^4 \{2 - 2J_0(w) - wJ_1(w)\}^2$$
(A8.4)

I₃, I₄は球晶内部の微細組織の散乱に対する寄与を示す. wは(19.25)式で与えられる.

$$I_{3} = \int_{0}^{R_{s}} \int_{0}^{R_{s}} L(r_{12}) J_{2}(r_{1}) J_{2}(r_{2}) r_{1} r_{2} dr_{1} dr_{2}$$
(A8.5)

$$I_{4} = \int_{0}^{R_{s}} \int_{0}^{R_{s}} M(r_{12}) J_{2}(r_{1}) J_{2}(r_{2}) r_{1} r_{2} dr_{1} dr_{2}$$
(A8.6)

$$L(r_{12}) = \langle \cos 2\gamma_{12} \rangle_{r_{12}}, \quad M(r_{12}) = \langle \cos \gamma_{12} \rangle_{r_{12}}$$
(A8.7)

(A8.7) 式のL, $M \operatorname{d} r_{12} = |r_2 - r_1|$ だけ離れた2つの散乱要素1,2の光軸の球晶の動径 軸まわりの回転角 γ_{12} または回転角の乱れ $\Delta \gamma_{12}$ の相関関数である. $\gamma_{12}, \Delta \gamma_{12} \operatorname{d} (A8.2)$ 式より次式の関係を有する.

$$\gamma_{12} = |\gamma_2 - \gamma_1| = |\Delta \gamma_2 - \Delta \gamma_1| = \Delta \gamma_{12} \tag{A8.8}$$

回転角の乱れΔγ12がランダムで酔歩統計に従うとすると、19.3節の議論と同様にL, M

は次式で与えられる.

$$L(r_{12}) = \exp\left(-\frac{r_{12}}{a_{\gamma}}\right), \quad M(r_{12}) = \exp\left(-\frac{r_{12}}{4a_{\gamma}}\right)$$
 (A8.9)

ここで、 a_{γ} は相関距離であり、酔歩の1歩の長さ*l*あたりの乱れの大きさ $\Delta\gamma_{12}(l)$ の二 乗平均平方根を $\langle [\Delta\gamma_{12}(l)]^2 \rangle^{1/2} \equiv \Delta\gamma_{12}(l)$ とすると

$$a_{\gamma} = \frac{l}{2\{\Delta\gamma_{12}(l)\}^2} = \frac{\langle L \rangle}{2(\Delta\gamma)^2}$$
(A8.10)

いま、図A8.3に示したように、球晶の内部微細組織として球晶の動径フィブリルを 構成する光学異方性フィブリル状組織の配列と、それらの動径軸まわりのランダムな 回転 γ_i (*i*=1,2,…)とし、隣接する組織間の平均距離を $\langle L \rangle$ とし、それらの回転角の乱 れが一定値± $\Delta\gamma$ をとるものとすると $l = \langle L \rangle$, $\Delta\gamma_{12}(l) = \Delta\gamma$ とすることができ、(A8.10) 式の第2式を得る.

(A8.3), (A8.4) 式より球晶全体のH_v散乱 $I_{H_v}^{\circ}$ は, $f=[3\cos^2\omega_0-1]/2=0(\omega_0=55^{\circ})$ の 場合を除き, ω_0 と無関係に方位角 μ =45°の奇数倍の μ で極大となるX型の四つ葉のク ローバー状散乱像を与えることがわかる.一方,(A8.3)式の I_3 項は $\sin^2 2\mu$ に, I_4 項は $\cos^2 2\mu$ に依存するので,それぞれ μ =45°の奇数倍の μ で極大となる散乱像(X型散乱 像と定義), μ =0°,90°で極大となる散乱像(十型散乱像と定義)を示す.いずれの項も 特性長 a_y または $\langle L \rangle$ に依存し,それらは球晶の半径 R_s より十分小さい. 逆関係の原理 に従えば,内部微細構造と関係した I_3 , I_4 項の散乱への寄与は広角領域に,球晶全体 の散乱への寄与を示す I_{HV} 項は小角領域に現れるので,図A8.1の複合散乱を説明する ことができる.小角領域で μ =45°の四つ葉のクローバー状散乱像を示し,広角領域 で十字型散乱像を示すことは, ω_0 が65~75°の範囲にあること, a_y/R_s が0.01のオー ダーであることがわかった.また広角領域では I_4 項の寄与が I_3 項の寄与より大きいこ とがわかる. ω_0 の値は球晶が負の複屈折を示す観察結果と一致した¹⁾.

この種の試料の変形にともなう広角,小角散乱の変化を解析することにより,球晶 全体の変形機構,球晶内部の変形機構を明確に解明することができよう.内部の不均

図A8.4 モノクロロトリフルオロエチレン-塩化ビニリデン共重合体フィルムのH_v散乱像. 塩化ビニリデン4 mol%, (a) 125℃で結晶化, (b) 119℃で結晶化⁵⁾.

ーの広がり(相関距離)が波長に比して十分小さくなれば、結局ωがランダムな場合に 近づき、19.1節の完全球晶の散乱に近づく.

図A8.4 (a)には、図15.6、図A8.1の散乱とは逆に、フィブリル状散乱が小角に、球 晶状散乱が広角に現れた例を示す。図A8.4 (a)の試料は、モノクロロトリフルオロエ チレン-塩化ビニリデン共重合体を125℃で結晶化したフィルムのH_v散乱像であ る⁵⁾、図A8.4 (b)は、(a)と同一試料を119℃で結晶化して得られたフィルムのH_v散乱 像である⁵⁾. (a)、(b)の散乱像の相違は、結晶化条件による結晶性高次構造の相違を 明確に示す.

付録8文献

[引用文献]

- 1) T. Hashimoto, Y. Murakami, Y. Okamori, and H. Kawai, Polymer J., 6, 554–563 (1974)
- 2) C. W. Bunn, A. J. Cobbold, and R. P. Palmer, J. Polym. Sci., 28, 365–376 (1958)
- 3) C. J. Speerschneider and C. H. Lie, J. Appl. Phys., 33, 1871–1875 (1962)
- 4) N. K. J. Symons, J. Polym. Sci., A, 1, 2843–2856 (1963)
- 5) G. C. Adams and R. S. Stein, J. Polym. Sci., A2, 6, 31-61 (1968)